期刊文献+

Optimized weak measurement of orbital angular momentum-induced beam shifts in optical reflection 被引量:3

Optimized weak measurement of orbital angular momentum-induced beam shifts in optical reflection
原文传递
导出
摘要 Tiny but universal beam shifts occur when a polarized light beam is reflected upon a planar interface.Although the beam shifts of Gaussian beams have been measured by the weak measurement technique, the weak measurement for orbital angular momentum(OAM)-induced spatial shifts of vortex beams is still missing.Here, by elaborately choosing the preselection and postselection states, the tiny OAM-induced Goos–H?nchen and Imbert–Fedorov shifts are amplified at an air–prism interface. The maximum shifts along directions both parallel and perpendicular to the incident plane are theoretically predicted and experimentally verified with optimal preselection and postselection states. These maximum shifts can be used to determine the OAM of vortex beams. Tiny but universal beam shifts occur when a polarized light beam is reflected upon a planar interface.Although the beam shifts of Gaussian beams have been measured by the weak measurement technique, the weak measurement for orbital angular momentum(OAM)-induced spatial shifts of vortex beams is still missing.Here, by elaborately choosing the preselection and postselection states, the tiny OAM-induced Goos–H?nchen and Imbert–Fedorov shifts are amplified at an air–prism interface. The maximum shifts along directions both parallel and perpendicular to the incident plane are theoretically predicted and experimentally verified with optimal preselection and postselection states. These maximum shifts can be used to determine the OAM of vortex beams.
出处 《Photonics Research》 SCIE EI CSCD 2019年第11期1273-1278,共6页 光子学研究(英文版)
基金 National Natural Science Foundation of China(11604050,61475066,61675092,61705086) Natural Science Foundation of Guangdong Province(2016A030311019,2016A030313079,2016TQ03X962,2017A010102006,2017A030313359,2017A030313375) Science Technology Project of Guangzhou(201604040005,201605030002,201704030105,201707010396,201803020023)
关键词 BEAM MOMENTUM ANGULAR
  • 相关文献

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部