期刊文献+

Pattern formation in 2-μm Tm Mamyshev oscillators associated with the dissipative Faraday instability 被引量:4

Pattern formation in 2-μm Tm Mamyshev oscillators associated with the dissipative Faraday instability
原文传递
导出
摘要 We investigate numerically the pattern formation in 2-μm thulium-doped Mamyshev fiber oscillators, associated with the dissipative Faraday instability. The dispersion-managed fiber ring oscillator is designed with commercial fibers, allowing the dynamics for a wide range of average dispersion regimes to be studied, from normal to nearzero cavity dispersion where the Benjamin–Feir instability remains inhibited. For the first time in the 2-μm spectral window, the formation of highly coherent periodic patterns is demonstrated numerically with rates up to ~100 GHz. In addition, irregular patterns are also investigated, revealing the generation of rogue waves via nonlinear collision processes. Our investigations have potential applications for the generation of multigigahertz frequency combs. They also shed new light on the dissipative Faraday instability mechanisms in the area of nonlinear optical cavity dynamics. We investigate numerically the pattern formation in 2-μm thulium-doped Mamyshev fiber oscillators, associated with the dissipative Faraday instability. The dispersion-managed fiber ring oscillator is designed with commercial fibers, allowing the dynamics for a wide range of average dispersion regimes to be studied, from normal to nearzero cavity dispersion where the Benjamin–Feir instability remains inhibited. For the first time in the 2-μm spectral window, the formation of highly coherent periodic patterns is demonstrated numerically with rates up to ~100 GHz. In addition, irregular patterns are also investigated, revealing the generation of rogue waves via nonlinear collision processes. Our investigations have potential applications for the generation of multigigahertz frequency combs. They also shed new light on the dissipative Faraday instability mechanisms in the area of nonlinear optical cavity dynamics.
出处 《Photonics Research》 SCIE EI CSCD 2019年第11期1287-1295,共9页 光子学研究(英文版)
基金 National Natural Science Foundation of China(51527901,61575106)
  • 相关文献

参考文献3

共引文献15

同被引文献29

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部