期刊文献+

RGO/ABS/EPDM复合材料的制备及性能研究

Preparation and property of RGO/ABS/EPDM composite
下载PDF
导出
摘要 采用改进的Hummer法合成氧化石墨烯(GO),将GO进行热还原得到还原氧化石墨烯(RGO),并通过直接熔融密炼法制备石墨烯/丙烯腈-丁二烯-苯乙烯/三元乙丙橡胶(RGO/ABS/EPDM)复合材料。采用扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、四探针法等分析手段对复合材料表面形貌、微观结构、导电性能和力学性能进行了表征。结果表明:RGO优先分散于丙烯腈-丁二烯-苯乙烯聚合物(ABS)中,且热还原得到的RGO有效地提高了复合材料的力学性能和导电性能;RGO添加量为2. 5%(wt,质量分数,下同)时,复合材料拉伸强度提高74. 8%,缺口冲击强度提高4. 6%;RGO添加量为1. 5%时,复合材料缺口冲击强度最大,提高19. 8%;随着RGO添加量的增加,复合材料电阻率逐渐下降,当RGO添加量达到2. 5%时,复合材料电阻率下降趋势变缓。 The modified Hummer method was used to prepare the graphene oxide(GO),and the GO was thermal reduced to obtain the RGO(reduced graphene oxide),and then the RGO/ABS/EPDM composite materials were prepared by direct melting and smelting method by combining RGO with ABS and EPDM. The surface morphology,microstructure,conductivity and mechanical properties were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier infrared(FT-IR) and four-probe method. The results showed that the RGO was preferentially dispersed in ABS,and the mechanical properties of composite materials(RGO added was 2. 5 wt%,the tensile strength increased by 74. 8 wt%,the impact strength increased by 4. 6 wt%) and electrical conductivity(with the increasing of the quality of RGO,the resistivity was decreased,when added amount of 2. 5%,the resistivity was declined slower than before) were improved effectively by additon the RGO.
作者 罗祖云 李媛媛 洪若瑜 Luo Zuyun;Li Yuanyuan;Hong Ruoyu(Zhicheng College,Fuzhou University,Fuzhou 350002;College of Chemical Engineering,Fuzhou University,Fuzhou 350116)
出处 《化工新型材料》 CAS CSCD 北大核心 2019年第11期72-76,共5页 New Chemical Materials
基金 科技部创新基金(11C26223204581) 福建省闽江学者奖励计划(闽人社批复[2016]149号) 中央引导地方科技发展专项基金(83017078) 福建省自然科学基金(2018J01431) 福州大学贵重仪器设备开放测试基金资助项目(2018T023) 福州大学至诚学院院级课程改革项目(ZJ1835) 福建省中青年教师教育科研项目(JT180808)
关键词 氧化石墨烯 热还原 复合材料 graphene oxide thermal reduction composite material
  • 相关文献

参考文献4

二级参考文献32

  • 1傅玲,刘洪波,邹艳红,李波.Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J].炭素,2005(4):10-14. 被引量:111
  • 2白景美,卢秀萍,邵金璐.纳米ZnO/ABS复合材料的制备及性能研究[J].中国塑料,2005,19(12):39-43. 被引量:8
  • 3Lee C G, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer grapheme [J]. Science, 2008, 321: 385-388.
  • 4Chen J H, Jang C, Xiao S D, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].Nat Nanotechnol, 2008, 3: 206-209.
  • 5Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence in patterned epitaxial grapheme[J]. Science, 2006, 312:1191- 1196.
  • 6Service R F. Carbon sheets an atom thick give rise to graphene dreams[J]. Science, 2009, 324: 875-877.
  • 7Balandin A A, Ghosh S, Bao W Z, et al, Lau C N. Superior thermal conductivity of single-layer grapheme[J]. Nano Lett, 2008, 8: 902-907.
  • 8Naarmann H, Hanack M, Matter R. A high yield easy method for the preparation of alkoxy-substituted triphenylenes [J ]. Synthesis, 1994, 5:477-478.
  • 9Krebs F C, Schiodt N C, Batsberg W, et al. Purification of 2, 3, 6, 7, 10, 11- hexamethoxytriphenylene and preparation of hexakiscarbonylmethyl and hexakiscyanomethyl derivatives of 2,3,6,7,10,11-hexahytriphenylene[J]. Synthesis, 1997,1285- 1290.
  • 10Yu X, Tang X Z, Pan C Y. Synthesis, characterization and self-assembly behavior of six-arme d star block copolymers with triphenylene core[J]. Polymer, 2005, 46 : 11149- 11156.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部