期刊文献+

基于联合对角化的声信号深度卷积混合盲分离方法 被引量:5

Deep Convolution Blind Separation of Acoustic Signals Based on Joint Diagonalization
下载PDF
导出
摘要 声信号在空间中的传播具有较强的多径效应,在接收端往往以卷积形式相互叠加,尤其在海洋、剧场等强混响条件下,混合滤波器冲激响应的长度会显著增加,现有的频域卷积盲分离算法将失效。为了消除长脉冲响应导致解混合模型失效的问题,该文对观测信号进行两次短时傅里叶变换(STFT),第1次STFT缩短了脉冲响应长度,第2次STFT将信号模型转化为瞬时盲分离,最终利用联合对角化(JD)技术估计出分离矩阵。与现有方法相比,所提方法解决了深度卷积混合下模型失效的问题,并且当源信号数较多或存在加性噪声时,可以得到更好的分离性能。仿真结果验证了方法的有效性和性能优势。 The propagation of acoustic signal in space has a strong multipath effect,and the receiver often overlaps in the form of convolution.Especially in strong reverberation conditions such as ocean and theatre,where the length of impulse response of hybrid filter increases significantly.In order to eliminate the problem that long impulse response leads to the failure of the frequency domain convolution blind separation algorithm,two Short-Time Fourier Transforms(STFT)are applied to the observed signal.The first STFT shortens the length of the hybrid filter.The second STFT converts the signal model into instantaneous blind separation.Finally,the separation matrix is estimated by Joint Diagonalization(JD)technique.Compared with the existing methods,this method solves the problem of model failure under deep convolution mixing,and can obtain better separation performance when the number of source signals is large or additive noise exists.The simulation results verify the effectiveness and performance advantages of the proposed method.
作者 李扬 张伟涛 楼顺天 LI Yang;ZHANG Weitao;LOU Shuntian(Institute of Electronic Engineering,Xidian University,Xi’an 710071,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2951-2956,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61571339) 陕西省创新人才推进计划-青年科技新星项目(2018KJXX-019)~~
关键词 盲源分离 深度卷积 联合对角化 排序问题 Blind source separation Deep convolution Joint Diagonalization(JD) Permutation problem
  • 相关文献

参考文献4

二级参考文献33

  • 1胡可,汪增福.一种基于时频分析的语音卷积信号盲分离算法[J].电子学报,2006,34(7):1246-1254. 被引量:12
  • 2马晓红,梁丽丽,殷福亮.基于盲源分离理论的麦克风阵列信号有音/无音检测方法[J].电子与信息学报,2007,29(3):589-592. 被引量:4
  • 3党杰,林秋华,殷福亮.基于盲源分离的多幅顺序图像加密方法[J].电子与信息学报,2007,29(6):1471-1475. 被引量:3
  • 4Fadaili E-M,Thirion-Moreau N,and Moreau E.Non-orthogonal joint diagonalization/zeros-diagonalization for source separation based on time-frequency distributions[J].IEEE Transactions on Signal Processing,2007,55(5):1673-1687.
  • 5Bousbiah-Salah H,Belouchrani A,and Abed-Meraim K.Jacobi-like algorithm for blind signal separation of convolutive mixtures[J].Electronics Letters,2001,37(16):1049-1050.
  • 6Abed-Meraim K and Beloucharni A.Algorithms for joint block diagonalization[C].Proc.EUSIPCO'04,Vienna,Austria,Sept.6-10,2004:209-212.
  • 7Ghennioui H,Fadaili E M,and Moreau N T,et al..A nonunitary joint block diagonalization algorithm for blind separation of convolutive mixtures of sources[J].IEEE Signal Processing Letters,2007,14(11):860-863.
  • 8Tiemin Mei, Fulian Yin, Jun Wang. Blind Source Separation Based on Cumulants With Time and Frequency Non- Properties [ J] , IEEE Trans. Audio, Specch and Languiage Processing, 2009 ,Vol. 17, No. 6, 1099-1108.
  • 9A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis [ M ]. New York: John Wiley and Sons, 2001.
  • 10Intae Lee, Taesu Kim, Te-won Lee, Fast fixed-point independent vector analysis algorithms for convolutive blind source separation[ J], 2007, Signal Processing 87, 1859- 1871.

共引文献21

同被引文献31

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部