期刊文献+

基于GSA-BP神经网络的电厂风机运行状态评估 被引量:2

State Evaluation of Fan in Power Plant Based on GSA-BP Neural Network
下载PDF
导出
摘要 风机的运行状态在很大程度上影响了火电厂生产的安全性和经济性。针对其健康状态的监测问题,提出了一种基于改进BP神经网络的风机运行状态评估方法。首先,通过BP神经网络建立正常状态下风机振动的预测模型;然后,根据风机的实时运行参数得到健康状态下风机振动的预测值;最后将振动的预测结果与实际值的相对误差来反映机组的退化程度和健康状态。为提高BP神经网络的收敛速度和泛化性能,将引力搜索算法(Gravitational Searching Algorithm,GSA)应用于神经网络权值的优化。现场实测数据表明,所提方法有较高的预测精度,能有效应用于风机运行状态的智能化评估。 The operating state of the fan in a power plant greatly affects the safety and economy of power generation.Aiming at the online monitoring problem of its health status,this paper proposes an intelligent evaluation method based on the improved BP neural network for the operating state of the induced draft fan.Firstly,the BP neural network is used to establish the vibration prediction model based on the operating parameters under normal conditions.Then,according to the real-time operating parameters of the fan,the predicted value of the induced draft fan is obtained.Finally,the predicted value of the vibration is compared with the actual value to evaluate the health state of the fan.In order to improve the convergence speed and generalization performance of BP neural network,Gravitational Searching Algorithm(GSA)is applied to the optimization of neural network weights.The measured data show that the vibration prediction model has higher prediction accuracy and can be effectively applied to the intelligent evaluation of the operating state of the fan.
出处 《工业控制计算机》 2019年第12期78-79,82,共3页 Industrial Control Computer
关键词 风机 状态监测 BP神经网络 引力搜索优化算法 fan condition monitoring BP neural network Gravity Search Algorithm(GSA)
  • 相关文献

参考文献4

二级参考文献43

  • 1孙叶柱,孙伟鹏,江永.1036MW机组汽动引风机控制策略优化及其深度节能研究[J].中国电机工程学报,2011,31(S1):217-221. 被引量:20
  • 2DAI JuChuan1,2,HU YanPing1,LIU DeShun1,2 & LONG Xin3 1 School of Electromechanical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China,2 College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China,3 Hara XEMC Windpower Co.,Ltd.,Xiangtan 411000,China.Calculation and characteristics analysis of blade pitch loads for large scale wind turbines[J].Science China(Technological Sciences),2010,53(5):1356-1363. 被引量:7
  • 3Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
  • 4阎威武.支持向量机理论、方法和应用研究[D].上海:上海交通大学硕士学位论文,2005.
  • 5Yu Y H, Chen L G, Sun F R, et al. Neural-network based analysis and prediction of a compressor' s charac- teristic performance map [J]. Applied Energy, 2007, 84(1) : 48 -55.
  • 6Kuo B C, Ho H H, Li C H, et al. A kernel-based fea- ture selection method for SVM with RBF kernel for hy- perspectral image classification [J ]. 1EEE Journal ofSelected Topics in Applied Earth Observations and Re- mote Sensing, 2014, 7( 1 ) :317 - 326.
  • 7Jiao L C, Bo L F, Wang L. Fast sparse approximation for least squares support vector machine [J]. 1EEE Transactions on Neural Networks, 2007, 18 ( 3 ) : 685 - 697.
  • 8Xavier-De-Souza S, Suykens J A, Vandewalle J, et al. Coupled simulated annealing [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernet- ics, 2010, 40(2) :320 -335.
  • 9Yao F, Sun H. Optimal control in variable-speed fan stations [ C ]//2011 IEEE 18 th International Conference on Industrial Engineering and Engineering Manage- ment. Changchun, China, 2011: 609-612.
  • 10Hu S K, Gao H F, Jia X J. Regulating characteristics analysis of boiler feed-water pump when 600 MW unit sliding-pressure operating [ J ]. Energy Procedia, 2012, 17:1153-1160.

共引文献55

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部