期刊文献+

Time-Domain Analysis of Underground Station-Layered Soil Interaction Based on High-Order Doubly Asymptotic Transmitting Boundary 被引量:2

下载PDF
导出
摘要 Based on the modified scale boundary finite element method and continued fraction solution,a high-order doubly asymptotic transmitting boundary(DATB)is derived and extended to the simulation of vector wave propagation in complex layered soils.The high-order DATB converges rapidly to the exact solution throughout the entire frequency range and its formulation is local in the time domain,possessing high accuracy and good efficiency.Combining with finite element method,a coupled model is constructed for time-domain analysis of underground station-layered soil interaction.The coupled model is divided into the near and far field by the truncated boundary,of which the near field is modelled by FEM while the far field is modelled by the high-order DATB.The coupled model is implemented in an open source finite element software,OpenSees,in which the DATB is employed as a super element.Numerical examples demonstrate that results of the coupled model are stable,accurate and efficient compared with those of the extended mesh model and the viscous-spring boundary model.Besides,it has also shown the fitness for long-time seismic response analysis of underground station-layered soil interaction.Therefore,it is believed that the coupled model could provide a new approach for seismic analysis of underground station-layered soil interaction and could be further developed for engineering.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第9期545-560,共16页 工程与科学中的计算机建模(英文)
基金 This research investigation was supported by the National Natural Science Foundation of China(Grant No.51678248 and Grant No.51878296) the Fundamental Research Funds for the Central Universities.And sincere thanks also to State Key Lab of Subtropical Building Science,South China University of Technology under Grant No.2017KB15 and the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin under Grant No.IWHRSKL-KF201818.
  • 相关文献

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部