期刊文献+

面向国防科技领域的技术和术语识别方法研究 被引量:12

Technology and Terminology Detection Oriented National Defense Science
下载PDF
导出
摘要 随着自然语言处理技术的发展,人们越来越重视构建面向国防科技领域的知识图谱。而面向国防科技领域的技术和术语识别是构建该领域技术知识图谱的基础。文中基于该领域的语料库,在技术和术语识别的任务上,探索了子词单元在传统序列标注Bi-LSTM+CRF模型上的应用。此外,针对任务的特点,提出了适用于技术和术语识别的语言学特征。基于该领域的语料库,实验结果表明技术和术语识别的F1值达到了71.80%,较基准系统提升了3.04%,能够较好地识别出面向国防科技领域的技术和术语。同时,所提方法也优于基于BERT模型的技术术语识别方法。 With the rapid development of natural language processing,constructing oriented national defense science(ONDS)technology knowledge base has received more and more attention.The identification of technology and terminology is fundamental for constructing ONDS technology knowledge base.To recognize technology and terminology,this paper explored the application of subwords in the traditional Bi-LSTM+CRF sequence labeling model.In addition,this paper proposed linguistic features to boost the performance.Experimental results on the annotated dataset show that the proposed approach achieves 71.8%F 1 scores,with improvement of 3.04%over the baseline system,indicating the effectiveness of the proposed approach in recognizing ONDS technology and terminology.Meanwhile,it also outperforms BERT-driven models in recognizing technology and terminology.
作者 冯鸾鸾 李军辉 李培峰 朱巧明 FENG Luan-luan;LI Jun-hui;LI Pei-feng;ZHU Qiao-ming(School of Computer Sciences and Technology,Soochow University,Suzhou,Jiangsu 215006,China;Provincial Key Laboratory for Computer Information Processing Technology,Suzhou,Jiangsu 215006,China)
出处 《计算机科学》 CSCD 北大核心 2019年第12期231-236,共6页 Computer Science
基金 国家自然基金项目重点项目(61836007),面上项目(61772354,61773276)资助
关键词 面向国防科技领域 技术和术语 子词 Bi-LSTM+CRF模型 语言学特征 Oriented national defense science Technology and terminology Subwords Bi-LSTM+CRF model Linguistic features
  • 相关文献

参考文献4

二级参考文献45

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2胡斌,汤伟,刘晓明.基于自然语言理解的文本标图系统设计与实现[J].解放军理工大学学报(自然科学版),2005,6(2):132-136. 被引量:9
  • 3张晓艳,王挺,陈火旺.命名实体识别研究[J].计算机科学,2005,32(4):44-48. 被引量:66
  • 4俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:157
  • 5董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 6Tjong Kim Sang E F, De Meulder F. Introduction to the CoNLL- 2003 shared task: Language-lndependent named entity recogni- tion[C] // Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4. Associa- tion for Computational Linguistics, 2003 : 142-147.
  • 7McCallum A, Li W. Early results for named entity recognition with conditional random fields, feature induction and web-en- hanced lexicons[C]//Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4. Association for Computational Linguistics, 2003 : 188-191.
  • 8Nadeau D, Sekine S. A survey of named entity recognition and classification[J]. Lingvisticae Investigationes, 2007,30 (1) : 3-26.
  • 9Kambhatla N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations [C]//Proc of the ACL 2004 on Interactive Poster and Demonstration Sessions. Stroudsburg, PA: Association for Computational Linguistics, 2004:1-4.
  • 10Zhou G D, Su J, Zhang J, et al. Exploring various knowledge in relation extraction [C]//Proc of the 43rd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA.. Association for Computational Linguistics, 2005:427-434.

共引文献137

同被引文献153

引证文献12

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部