期刊文献+

Energy Release Rates for Interface Cracks in Multilayered Structures

下载PDF
导出
摘要 This paper examines the evolution of the interfacial deflection energy release rates in multilayered structures under four-point bending.The J-integral and the extended finite element method(XFEM)are adopted to investigate the evolution of the interfacial deflection energy release rates of composite structures.Numerical results not only verify the accuracy of analytical solutions for the steady-state interfacial deflection energy release rate,but also provide the evolutionary history of the interfacial deflection energy release rate under different crack lengths.In addition,non-dimensional parametric analyses are performed to discuss the effects of normalized ratios of the crack length,the elastic modulus,and the thickness on the interfacial deflection energy release rate.The results demonstrate that the elastic modulus ratio and thickness ratio have a distinct influence on the interfacial deflection energy release rate for multilayered beams.Furthermore,an unstable interfacial crack tends to occur for elastic multilayer beams with higher elastic modulus on the upper sub-beam under bending moments.The unstable interfacial fracture shows a decreasing interfacial deflection energy release rate with an increasing interfacial crack length.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第8期261-272,共12页 工程与科学中的计算机建模(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部