期刊文献+

The Analysis of Thermal-Induced Phase Transformation and Microstructural Evolution in Ni-Ti Based Shape Memory Alloys By Molecular Dynamics 被引量:1

下载PDF
导出
摘要 Shape memory alloys has been widely applied on actuators and medical devices.The transformation temperature and microstructural evolution play two crucial factors and dominate the behavior of shape memory alloys.In order to understand the influence of the composition of the Ni-Ti alloys on the two factors,molecular dynamics was adopted to simulate the temperature-induced phase transformation.The results were post-processed by the martensite variant identification method.The method allows to reveal the detailed microstructural evolution of variants/phases in each case of the composition of Ni-Ti.Many features were found and having good agreement with those reported in the literature,such as the well-known Rank-2 herringbone structures;the X-interface;Ni-rich alloys have lower transformation temperature than Ti-rich alloys.In addition,some new features were also discovered.For example,the Ti-rich alloys enabled an easier martensitic transformation;the nucleated martensite pattern determined the microstructural evolution path,which also changed the atomic volume and temperature curves.The results generated in the current study are expected to provide the design guidelines for the applications of shape memory alloys.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第8期319-332,共14页 工程与科学中的计算机建模(英文)
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部