期刊文献+

Simulation of Damage Evolution and Study of Multi-Fatigue Source Fracture of Steel Wire in Bridge Cables under the Action of Pre-Corrosion and Fatigue 被引量:2

下载PDF
导出
摘要 A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper.Based on pitting accelerated crack nucleation theory in combination with continuum mechanics,cellular automata technology(CA)and finite element(FE)analysis,the damage evolution process of steel wire under pre-corrosion and fatigue is simulated.This method automatically generates a high-strength steel wire model with initial random pitting defects,and on the basis of this model,the fatigue damage evolution process is simulated;thus,the fatigue life and fatigue performance of the corroded steel wire can be evaluated.A comparison of the numerical simulation results with the experimental results shows that this method has strong reliability and practicability in predicting the fatigue life of corroded steel wire and simulating the damage evolution process.Based on the method proposed in this paper,the fatigue life of steel wires with different degrees of corrosion under the action of different stress levels is predicted.The results show that as the degree of corrosion increases,the fatigue properties of steel wire gradually decrease,and the influence of existing pitting corrosion on fatigue life is far greater than that on mass loss.Stress concentration is the main cause of fatigue life of corroded steel wire in advance attenuation.In addition,the fracture process of steel wire with multi-fatigue sources and the effect of the number and distribution of pits on the fatigue life of steel wire are studied.The results show that,compared with a stepped pitting distribution,a planar pitting distribution has a greater impact on the damage evolution process.The fatigue life of steel wire is positively correlated with the number of pits and the angle and distance between pits.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第8期375-419,共45页 工程与科学中的计算机建模(英文)
基金 The works described in this paper are substantially supported by the grant from the National Natural Science Foundation of China(Grant No.51678135) the Natural Science Foundation of Jiangsu Province(No.BK20171350) the Fundamental Research Funds for the Central Universities(No.2242016R30009) the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the Top-notch Academic Program Project of Jiangsu Higher Education Institutions(TAPP) Six Talent Peak Projects in Jiangsu Province(JNHB-007),which are gratefully acknowledged.
  • 相关文献

参考文献4

二级参考文献34

共引文献41

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部