期刊文献+

ZnWO4∶Eu3+,Dy3+白色荧光粉的微波水热合成及其发光性能 被引量:5

Microwave Hydrothermal Synthesis and Luminescent Properties of ZnWO4:Eu3+,Dy3+ White Light-Emitting Phosphors
下载PDF
导出
摘要 采用微波水热法快速合成了Zn0. 9975-xWO4∶0. 0025Eu3+,x Dy3+(x=0,0. 0025,0. 005,0. 01,0. 02)一系列单一基质白色荧光粉。通过X射线粉末衍射仪、扫描电镜、荧光分光光度计、光谱分析仪等对样品进行分析表征。结果表明:在180℃下仅用2 h即可合成单斜晶系黑钨矿结构的Zn WO4∶Eu3+,Dy3+纯相,且有较高的结晶度;样品颗粒为类球形,尺寸在50 nm左右。在303 nm的紫外光激发下,该荧光粉可以同时产生WO24-、Dy3+和Eu3+的特征发射,主峰分别位于472 nm、583 nm和617 nm。当样品组成为Zn WO4∶0. 0025Eu3+,0. 005Dy3+时,其色坐标为:x=0. 3359,y=0. 3064,接近理想白光,色温:5290 K。 A series of Zn 0.9975-x WO 4∶0.0025Eu 3+,x Dy 3+(x=0,0.0025,0.005,0.01,0.02)single host white light-emitting phosphors were successfully prepared by microwave hydrothermal method.The samples were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM),fluorescence spectrophotometer and spectrum analyzer.The results show that the ZnWO 4∶Eu 3+,Dy 3+pure phase with monoclinic wolframite structure can be synthesized under the condition of 180℃/2 h.The particles of sample are approximately spherical in shape,and the particle size is about 50 nm in the diameter.Under the UV excitation of 303 nm,the phosphor generates the characteristic emissions of WO 2-4,Dy 3+and Eu 3+with the corresponding main peak located at 472 nm,583 nm and 617 nm,respectively.When the composition of the sample is ZnWO 4∶0.0025Eu 3+,0.005Dy 3+,its color coordinate is x=0.3359,y=0.3064,which is very close to the ideal white light point,and its color temperature is 5290 K.
作者 翟永清 王恒刚 李天姿 姜龙太 汪威澳 陈湘匀 荆雪蒙 ZHAI Yong-qing;WANG Heng-gang;LI Tian-zi;JIANG Long-tai;WANG Wei-ao;CHEN Xiang-yun;JING Xue-meng(College of Chemistry and Environmental Science,Hebei University,Baoding 071002,China)
出处 《人工晶体学报》 EI CAS 北大核心 2019年第11期2105-2110,共6页 Journal of Synthetic Crystals
基金 国家自然科学基金(21804030) 河北大学科研成果转化为教学资源资助项目(KYZJX18135) 2019年河北大学大学生创新创业训练计划项目(2019190)
关键词 白光LED 白色荧光粉 微波水热法 Zn WO4 Eu3+ Dy3+共掺 W-LED white light-emitting phosphor microwave hydrothermal method ZnWO 4 Eu 3+ Dy 3+co-doping
  • 相关文献

参考文献2

二级参考文献42

  • 1Kim J S;Jeon P E;Park Y H.查看详情[J],Applied Physics Letters2004(17):3696-3698.
  • 2Ma W B;Shi Z P;Wang R.查看详情[J],Journal of Alloys and Compounds2010118-121.
  • 3Sotiriou G A;Schneider M;Pratsinis S E.查看详情[J],Journal of Physical Chemistry C20111084-1089.
  • 4印琰;杨宝东;朱月华.查看详情[J],Chinese J Rare Earths (Zhongguo Xitu Xuebao)2010(05):536-542.
  • 5Shang M M;Li G G;Kang X J.查看详情[J],A CS Appl Mater Interfaces20112738-2746.
  • 6Ono T;Ogata N;Miyaro Y.查看详情[J],Journal of Catalysis199678-78.
  • 7游振宇;涂朝阳;李坚富.查看详情[J],J Synth Cryst (Rengong Jingti Xuebao)2011(05):1087-1092.
  • 8李慧;杨魁胜;祁宁.查看详情[J],Chinese J Inorg Chem (Wuji Huaxue Xuebao)2012(02):221-226.
  • 9Gu J;Zhu Y C;Li H B.查看详情[J],Solid State Sciences2010(12):1192-1198.
  • 10Lei F;Yan B;Chen H H;Zhao J T.查看详情[J],Inorganic Chemistry20097576-7584.

共引文献20

同被引文献65

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部