期刊文献+

母羊发情声音数字化识别模型的建立 被引量:5

Establishment of Digital Recognition Model for Ewe Estrus Sound
下载PDF
导出
摘要 本试验旨在通过构建模型,利用计算机技术识别母羊发情的叫声。对40只崂山奶山羊发情、羔羊寻母、母羊饥饿和饲料刺激4种类型声音进行录制,通过搭建程序对原始声音进行声音信号分析,然后将声音进行预处理并进行特征参数提取,发现母羊发情、饥饿、羔羊寻母状态下羊的声音强度和频率有显著差异。利用隐马尔可夫模型(HMM)、支持向量机(SVM)和迭代算法(Adaboost)3种声音模型对羊声音进行识别准确率验证,结果显示3种声音模型识别羊的发情状态与试情结果吻合率为96.67%、84.17%和87.92%。从动物行为学的角度分析,可以利用计算机处理羊的声音识别出母羊发情等状态。 This experiment aims to identify the estrus of the ewes by constructing a model using computer technology.Four types of the sound,including coming from estrus,lamb looking for mother,ewes and feed stimuli,from 40 Laoshan dairy goats were recorded..The sound signal was analyzed by setup program,and then the sound was preprocessed and the feature parameters were extracted.It was found that there were significant differences in sound intensity and frequency of ewes in estrus,hunger and seeking ewes.Models trained using HMM,SVM and Adaboost three sound models can be verified by testing the recognition accuracy.The results showed that the coincidence rate of sound recognition of estrusestrus state and estrus test were 96.67%,84.17%and 87.92,respectively.According to the analysis of animal behavior,we can use the computer to process the sound of the goat to identify the status of the ewes.
作者 黄福任 贾博 徐洪东 李桢 黄娇娇 潘庆杰 董焕声 HUANG Furen;JIA Bo;XU Hongdong;LI Zhen;HUANG Jiaojiao;PAN Qingjie;DONG Huansheng(College of Animal Science,Qingdao Agricultural University,Shandong Qingdao 266109,China;Station of Dong Ge Animal Health and Product Quality Supervision,Shandong Pingdu 266109,China)
出处 《中国畜牧杂志》 CAS 北大核心 2019年第12期8-11,共4页 Chinese Journal of Animal Science
基金 山东省现代农业产业技术体系羊产业创新团队项目(SDAIT-10-03) 山东省农业重大应用技术创新项目(6682217004) 青岛农业大学高层次人才启动基金(6631116014)
关键词 母羊发情 声音信号分析 识别准确率 计算机模型 Estrus of ewes Voice signal analysis Recognition accuracy Computer models
  • 相关文献

参考文献7

二级参考文献29

  • 1陈家焱,陈冬娇,张达响.基于Matlab的声音信号采集与分析处理[J].计算机与现代化,2005(6):91-92. 被引量:21
  • 2彭玉华,汪文秉.小波用于估测散射波波达时间及去噪[J].电子学报,1996,24(4):113-116. 被引量:18
  • 3李富强,万红,黄俊杰.基于MATLAB的语谱图显示与分析[J].微计算机信息,2005,21(10X):172-174. 被引量:27
  • 4M. COWLING. Non-speech Environmental Sound Classification Systems for Autonomous Surveillance[D]. PhD Thesis, School of Information Technology, Griffith University, Gold Coast Campus, 2004.
  • 5LI DONGGE, ISHWAR K. Classification of General Audio Data for Content Based Retrieval[J].Pattern Recognition Letters,2001, 22:5332-5441.
  • 6VAPNIK V. The Nature of Statistical Learning Theory[M]. Springer-Verlag, 1995.
  • 7ROGER JANG. Audio Signal Processing and Recognition, online course: http://neural.cs.nthu.edu.tw/jang/books/audio Signal Processing/[J/OL].
  • 8SCHLKOPF B, M IKA S. Input Space vs. Feature Space in Kernel Based Methods[J]. IEEE Trans on Neural Networks, 1999, 10 (9):1000-1017.
  • 9杨行竣 迟惠生.语音信号数字处理 [M].北京:电子工业出版社,1995..
  • 10LawrenceRabiner.Biing-HwangJuang,语音识别基本原理-影印版 [M].北京:清华大学出版社,1999..

共引文献175

同被引文献117

引证文献5

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部