摘要
The substitution of elements has attracted great interest to enhance the electrochemical properties of sodium-ion batteries(SIBs).Herein,the P2-Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 electrode samples were prepared via a solid-state route.The effect of La3+substitution was researched as high-rate SIBs cathode.The Na0.67Co0.35Ti0.20Mn0.44La0.01O2 exhibits a superior initial specific capacity of 162.7 and 125.9 mA h/g after50 cycles at 0.1 C rate,and the initial specific discharge capacity of 115.2 mA h/g with 60.6%capacity retention after 100 cycles at 1 C In addition,the Na0.67Co0.35Ti0.20Mn0.44La0.01O2 sample shows an excellent rate capacity of 91.9 and 60.4 mA·h/g with 46.9%and 50.9%capacity retentions even at 8 C and 10 C rate after100 cycles,respectively.The promising La-substituted P2-type Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 material provides a new strategy for designing high-rate performance of SIBs.
The substitution of elements has attracted great interest to enhance the electrochemical properties of sodium-ion batteries(SIBs).Herein,the P2—Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 electrode samples were prepared via a solid-state route.The effect of La3+substitution was researched as high-rate SIBs cathode.The Na0.67Co0.35Ti0.20Mn0.44La0.01O2 exhibits a superior initial specific capacity of 162.7 and 125.9 mA h/g after50 cycles at 0.1 C rate,and the initial specific discharge capacity of 115.2 mA h/g with 60.6% capacity retention after 100 cycles at 1 C In addition,the Na0.67Co0.35Ti0.20Mn0.44La0.01O2 sample shows an excellent rate capacity of 91.9 and 60.4 mA·h/g with 46.9% and 50.9% capacity retentions even at 8 C and 10 C rate after100 cycles,respectively.The promising La-substituted P2-type Na0.67Co0.35Ti0.20Mn0.45-xLaxO2 material provides a new strategy for designing high-rate performance of SIBs.