期刊文献+

Hilbert空间上线性斜积半流的一致指数膨胀性的存在条件

Criteria for the existence of uniform exponential expansiveness of linear skew-product semiflows in Hilbert spaces
下载PDF
导出
摘要 该文的主要目的是在Hilbert空间中基于线性斜积半流的定义研究其一致指数膨胀的存在条件.应用泛函分析与算子理论相关方法,得到了线性斜积半流满足一致指数膨胀的若干连续时间形式的Lyapunov算子不等式.所得的Lyapunov型结论推广和完善了指数稳定性与指数膨胀性理论中的一些已有结果(如Datko、Pazy、Rolewicz等). In this paper the existence conditions for uniform exponential expansiveness of linear skew-product semiflows are studied in Hilbert spacesbased on the definition of linear skew-product semiflows.Several continuous-time Lyapunov operator inequalities for uniform exponential expansiveness are obtained via functional analysis and operator theory.The Lyapunov type results extend some well-known conclusions in exponential stability theory and exponential expansiveness theory.
作者 岳田 YUE Tian(School of Science,Hubei University of Automotive Technology,Shiyan,Hubei 442002,China)
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期876-878,共3页 Journal of Central China Normal University:Natural Sciences
基金 湖北省教育厅科学技术研究项目(B2018073) 湖北汽车工业学院教学研究与改革重点项目(JY2019016)
关键词 一致指数膨胀性 线性斜积半流 HILBERT空间 uniform exponential expansiveness linear skew-product semiflows Hilbert space
  • 相关文献

参考文献6

二级参考文献36

  • 1王彩侠,宋晓秋.n次积分C半群与非齐次抽象柯西问题的强解[J].应用泛函分析学报,2006,8(3):247-251. 被引量:5
  • 2MEGAN M, STOICA C. Exponential instability of skew- evolution semiflows in Banach spaces[J]. Stud Univ l:bes- Bolyai Math,2008:,53(1) :17-24.
  • 3STOICA C, MEGAN M. On uniform exponential sta- bility for skew-evolution semiflows on Banach spaces :-J:. Nolinear Analysis,2010,72(3/4) : 1305-1313.
  • 4HAI P H. Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows[J]. Nolinear Anal,2010,72(12) :4390-4396.
  • 5HAI P H. Discrete and continuous versions of Bar- bashin-type theorems of linear skew-evolution semi- flows[J]. Appl Anal,2011,90(12) :1897-1907.
  • 6STOICA C, MEGAN M. On nonuniform exponential stability for skew-evolution semiflows in Banach spaces ['J:. Carpathian J Math, 2013,29 (2) : 259-266.
  • 7STOICA C, BORLEA D. Exponential stability versus polynomial stability for skew-evolution semiflows in infinite dimensional spaces [J]. Theory Appl Math Comput Sci,2014,4(2) :221-229.
  • 8DATKO R. Uniform asymptotic stability of evolution- ary processes in Banach spaces E Jl. SIAM J Math Anal, 1972,3 (3) : 428-445.
  • 9YUE T, SONGX Q, LID Q. On weak exponential expansiveness of skew-evolution semiflows in Banach spaces[J]. J Inequal Appl, 2014 ( 1 ) : 1-11.
  • 10YUE T, LEI G L, SONG X Q. Some characteriza- tions for the uniform exponential expansiveness of lin- ear skew-evoluti0n semiflows[J]. Advances in Mathe- matics (China), 2015, 45, doi: 10. 11845/sxjz. 2014173b.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部