期刊文献+

Quantum search for unknown number of target items by hybridizing fixed-point method with trail-and-error method

Quantum search for unknown number of target items by hybridizing fixed-point method with trail-and-error method
下载PDF
导出
摘要 For the unsorted database quantum search with the unknown fraction λ of target items, there are mainly two kinds of methods, i.e., fixed-point and trail-and-error.(i) In terms of the fixed-point method, Yoder et al. [Phys. Rev. Lett.113 210501(2014)] claimed that the quadratic speedup over classical algorithms has been achieved. However, in this paper, we point out that this is not the case, because the query complexity of Yoder’s algorithm is actually in O(1/λ01/2)rather than O(1/λ1/2), where λ0 is a known lower bound of λ.(ii) In terms of the trail-and-error method, currently the algorithm without randomness has to take more than 1 times queries or iterations than the algorithm with randomly selected parameters. For the above problems, we provide the first hybrid quantum search algorithm based on the fixed-point and trail-and-error methods, where the matched multiphase Grover operations are trialed multiple times and the number of iterations increases exponentially along with the number of trials. The upper bound of expected queries as well as the optimal parameters are derived. Compared with Yoder’s algorithm, the query complexity of our algorithm indeed achieves the optimal scaling in λ for quantum search, which reconfirms the practicality of the fixed-point method. In addition, our algorithm also does not contain randomness, and compared with the existing deterministic algorithm, the query complexity can be reduced by about 1/3. Our work provides a new idea for the research on fixed-point and trial-and-error quantum search. For the unsorted database quantum search with the unknown fraction λ of target items, there are mainly two kinds of methods, i.e., fixed-point and trail-and-error.(i) In terms of the fixed-point method, Yoder et al. [Phys. Rev. Lett.113 210501(2014)] claimed that the quadratic speedup over classical algorithms has been achieved. However, in this paper, we point out that this is not the case, because the query complexity of Yoder’s algorithm is actually in O(1/λ01/2)rather than O(1/λ1/2), where λ0 is a known lower bound of λ.(ii) In terms of the trail-and-error method, currently the algorithm without randomness has to take more than 1 times queries or iterations than the algorithm with randomly selected parameters. For the above problems, we provide the first hybrid quantum search algorithm based on the fixed-point and trail-and-error methods, where the matched multiphase Grover operations are trialed multiple times and the number of iterations increases exponentially along with the number of trials. The upper bound of expected queries as well as the optimal parameters are derived. Compared with Yoder’s algorithm, the query complexity of our algorithm indeed achieves the optimal scaling in λ for quantum search, which reconfirms the practicality of the fixed-point method. In addition, our algorithm also does not contain randomness, and compared with the existing deterministic algorithm, the query complexity can be reduced by about 1/3. Our work provides a new idea for the research on fixed-point and trial-and-error quantum search.
作者 Tan Li Shuo Zhang Xiang-Qun Fu Xiang Wang Yang Wang Jie Lin Wan-Su Bao 李坦;张硕;付向群;汪翔;汪洋;林杰;鲍皖苏(Henan Key Laboratory of Quantum Information and Cryptography,PLA SSFIEU,Zhengzhou 450001,China;Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期68-74,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11504430 and 61502526) the National Basic Research Program of China(Grant No.2013CB338002)
关键词 quantum search FIXED-POINT trail-and-error unknown number of target items quantum search fixed-point trail-and-error unknown number of target items
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部