期刊文献+

Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction 被引量:1

Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
下载PDF
导出
摘要 A surface plasmon resonance(SPR) sensor with two orthogonal open loops based on microstructured optical fibers(MOFs) is introduced. The interaction between core mode and surface plasmon polariton(SPP) mode produced by two different metal films is studied. Full vector finite element method is used to analyze the coupling and sensing characteristics.The results show that there are three loss peaks near the Au/Ag film, and multi-peak calibration is achieved. Because of the positive and negative sensitivity of the amplitude, the sensor has strong anti-interference capability when the external environment changes. The sensor can detect the refractive index between 1.37 and 1.40, and the working wavelength is between 1600 nm and 2400 nm. Because the sensor has some excellent characteristics, it can be used in biochemical sensing, environmental detection, and other related fields. A surface plasmon resonance(SPR) sensor with two orthogonal open loops based on microstructured optical fibers(MOFs) is introduced. The interaction between core mode and surface plasmon polariton(SPP) mode produced by two different metal films is studied. Full vector finite element method is used to analyze the coupling and sensing characteristics.The results show that there are three loss peaks near the Au/Ag film, and multi-peak calibration is achieved. Because of the positive and negative sensitivity of the amplitude, the sensor has strong anti-interference capability when the external environment changes. The sensor can detect the refractive index between 1.37 and 1.40, and the working wavelength is between 1600 nm and 2400 nm. Because the sensor has some excellent characteristics, it can be used in biochemical sensing, environmental detection, and other related fields.
作者 吴萌 刘欣宇 周桂耀 夏长明 李波瑶 侯峙云 Meng Wu;XinYu Liu;Gui-Yao Zhou;Chang-Ming Xia;Bo-Yao Li;Zhi-Yun Hou(Guangzhou Key Laboratory for Special Fiber Photonic Devices,South China Normal University(SCNU),Guangzhou 510006,China;Guangdong Province Key Laboratory of Nano-photonic Functional Materials and Devices,South China Normal University,Guangzhou 510006,China;Guangdong Provincial Engineering Technology Research Center for Microstructured Functional Fibers and Devices,South China Normal University,Guangzhou 510006,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期153-159,共7页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.61575066,61527822,and 61735005) the Natural Science Foundation of Guangdong Province,China(Grant No.2017A030313333) the Science and Technology Program of Guangzhou City,China(Grant No.201707010133) the Science and Technology Planning Project of Guangdong Province,China(Grant No.2017KZ010201) the GDUPS(2017) the Innovation Project of Graduate School of South China Normal University(Grant No.2018LKXM040) the SCNU Study Abroad Program for Elite Postgraduate Students,China
关键词 surface plasma BIOSENSOR multi-component detection photonic crystal fiber surface plasma biosensor multi-component detection photonic crystal fiber
  • 相关文献

同被引文献22

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部