期刊文献+

One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range 被引量:1

One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
下载PDF
导出
摘要 Optical features of a semiconductor–dielectric photonic crystal are studied theoretically. Alternating layers of micrometer sized SiO2/In Sb slabs are considered as building blocks of the proposed ideal crystal. By inserting additional layers and disrupting the regularity, two more defective crystals are also proposed. Photonic band structure of the ideal crystal and its dependence on the structural parameters are explored at the first step. Transmittance of the defective crystals and its changes with the thicknesses of the layers are studied. After extracting the optimum values for the thicknesses of the unit cells of the crystals, the optical response of the proposed structures at different temperatures and incident angles are investigated. Changes of the defect layers’ induced mode(s) are discussed by taking into consideration of the temperature dependence of the In Sb layer permittivity. The results clearly reflect the high potential of the proposed crystals to be used at high temperature terahertz technology as a promising alternative to their electronic counterparts. Optical features of a semiconductor–dielectric photonic crystal are studied theoretically. Alternating layers of micrometer sized SiO2/In Sb slabs are considered as building blocks of the proposed ideal crystal. By inserting additional layers and disrupting the regularity, two more defective crystals are also proposed. Photonic band structure of the ideal crystal and its dependence on the structural parameters are explored at the first step. Transmittance of the defective crystals and its changes with the thicknesses of the layers are studied. After extracting the optimum values for the thicknesses of the unit cells of the crystals, the optical response of the proposed structures at different temperatures and incident angles are investigated. Changes of the defect layers’ induced mode(s) are discussed by taking into consideration of the temperature dependence of the In Sb layer permittivity. The results clearly reflect the high potential of the proposed crystals to be used at high temperature terahertz technology as a promising alternative to their electronic counterparts.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期170-179,共10页 中国物理B(英文版)
关键词 photonic band gap photonic crystal semiconductor layer defect mode photonic band gap photonic crystal semiconductor layer defect mode
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部