期刊文献+

一对多轮换估计法下的同伴驱动抽样方法探讨

Discussion on Respondent-Driven Sampling Method Based on
下载PDF
导出
摘要 在研究微博用户行为时,研究者常需要利用抽样数据来估计微博用户的总体比例。然而互联网数据具有的海量性和不稳定性导致在微博环境下使用概率抽样方法出现困难。文章分析了一种非概率抽样方法--同伴驱动抽样方法,并引入了一对多轮换估计的概念,提出了一对多轮换估计法下的同伴驱动抽样,来估测微博用户的总体比例。经过理论推导和实证检验,一对多轮换估计法下的同伴驱动抽样方法能够有效地估计多类微博用户的总体比例,是一种可推广于社交网络数据采集的大数据抽样方法。 In studying the behavior of micro-blog users, the researchers often use sampling data to estimate the overall proportion of micro-bloggers. However, the massive and unstable nature of the Internet data leads to the difficulty of using probability sampling method in micro-blog environment. This paper analyzes a non-probability sampling method, i.e. respondent-driven sampling method, and introduces the concept of one-to-multiple rotation estimation, proposing using respondent-driven sampling under a multi-rotation estimation method to evaluate the overall proportion of micro-blog users. Through theoretical derivation and empirical test, the respondent-driven sampling method under the one-to-many rotation estimation method can be used to effectively estimate the overall proportion of the multiple types of micro-blog users. This is a big data sampling method that can be popularized in social network data collection.
作者 聂瑞华 石洪波 米子川 Nie Ruihua;Shi Hongbo;Mi Zichuan(Department of Economics,Taiyuan Normal University,Taiyuan 030619,China;School of Information and Management,Shanxi University of Finance and Economics,Taiyuan 030006,China;School of Statistics,Shanxi University of Finance and Economics,Taiyuan 030006,China)
出处 《统计与决策》 CSSCI 北大核心 2019年第22期16-19,共4页 Statistics & Decision
基金 国家社会科学基金资助项目(17BTJ010)
关键词 同伴驱动抽样 比例估计 一对多轮换估计法 大数据抽样 respondent-driven sampling proportional estimation one-to-multiple rotation estimation big data sampling
  • 相关文献

参考文献3

二级参考文献34

  • 1Yin D, Hong L. BD Davison Structural Link Analysis and Prediction in Microblogs[C]//Proceedings of 20th ACM Conference on Information and Knowledge Man- agement (CIKM 2011), Glasgow,Scotland, UK,2011: 24-28.
  • 2Lerman K, Ghosh R. Information Contagion: an Empiri- cal Study of the Spread of News on Digg and Twitter Soeail Networks[C]//Proceedings of 4th International Conference on Weblogs and Social Media, 2010: 90-97.
  • 3Ellison N B, Steinfield C, Lampe C. The Benefits of Facebook "Friends":Social Capital and College Stu- dents' Use of Online Social Network Sites[J].Journal of Computer-Mediated Communication, 2007, 12(4):1143-1168.
  • 4Cho Y, Hwang J, Lee D. Identification of Effective Opinion Leaders in the Diffusion of Technological In- novation: A Social Network Approach [J].Technologi- cal Forecasting and Social Change, 2012, 79(1): 97-106.
  • 5Sharma P, Khurana U, Shneiderman B, Scharrenbroi- ch M, Locke J. Speeding Up Network Layout and Cen- trality Measures for Social Computing Goals [C]//So- cial Computing, Behavioral Cultural Modeling and Prediction, Lecture Notes in Computer Science, Sorincer Berlin Heidelberg,2011: 244-251.
  • 6Hair JF, Black WC, Babin B J, Anderson RE, Tatham RL. Multivariate Data Analysis - 6^th edition [C]. New Jersey: Pearson Education,2006.
  • 7中国互联网络信息中,心.第36次中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201507/P020150723549500667087.pdf,2015-09-01.
  • 8薛薇.SPSS统计分析方法及应用(第3版)[M].北京:电子工业出版社,2013:262-263.
  • 9Cha M. , Haddadi H. , Benevenuto F. , et al. ,Measuring User Influence in Twitter. The Million Follower Fallacy, Proceed- ings of the 4th International Conference on Weblogs and Social Media, 2010,pp. 10 - 17.
  • 10Kwak H. , Lee C. , Park H. , et al., What is Twitter, asocial network or a news med/a?,Proceedings of the 19th International Conference on World Wide Web, 2010,pp. 591 -600.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部