期刊文献+

一种组合型损失函数的位姿估计算法

Pose Estimation Algorithm Based on Combined Loss Function
原文传递
导出
摘要 基于卷积神经网络(CNN)的目标位姿估计模型的损失函数大多采用两点之间的欧氏距离作为评判准则,虽然该损失函数计算简单、运算速度快,但训练规则不够全面、缺乏对目标的全局认识。针对这一问题,提出了一种基于组合型损失函数的ComPoseNet模型,并进行位姿估计。此模型中的损失函数从空间学习的角度出发,同时利用两点欧氏距离、两点直线和两点直线角度等作为训练规则。相比传统损失函数,此算法分别从点、线以及角度方面考虑了目标的空间整体位置,进一步减小了估计位姿与真实位姿之间的误差,位姿估计得以改善。在LineMod数据上进行大量的实验和分析,结果表明,在相同的训练次数情况下,本文算法比传统算法收敛速度快、精度高、误差小,其中平移误差降低了7.407%,角度误差降低了6.968%。 The loss function of a target pose estimation model based on a convolutional neural network(CNN)mostly uses the Euclidean distance between two points as the evaluation criterion.Although the loss function is simple in calculation and fast in operation,the training rules are not comprehensive enough and lack global understanding of the target.In this paper,a ComPoseNet model based on a combined loss function is proposed for pose estimation.The loss function in this model is based on spatial learning,and the two-point Euclidean distance,straight line,and straight line angle are used as training rules.Compared with the traditional loss function,this algorithm considers the spatial position of the target from the point,line,and angle,reducing the error between the estimated and the real poses so that the effect of the pose estimation is improved.Numerous experiments and analysis of LineMod data show that the algorithm has a higher convergence speed,greater accuracy,and smaller errors than the traditional algorithm operating for the same training times.The translation error is reduced by7.407%,and the angle error is reduced by 6.968%.
作者 张德 李国璋 王怀光 张峻宁 Zhang De;Li Guozhang;Wang Huaiguang;Zhang Junning(Department of Vehicle and Electrical Engineering,Army Engineering University Shijiazhuang Campus,Shijiazhuang,Hebei 050003,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第22期49-56,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(51205405,51305454)
关键词 图像处理 损失函数 位姿估计 深度学习 神经网络 计算机视觉 image processing loss function pose estimation deep learning neural network computer vision
  • 相关文献

参考文献8

二级参考文献53

共引文献1859

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部