期刊文献+

复杂情况下自适应特征更新目标跟踪算法 被引量:11

Adaptive Feature Update Object-Tracking Algorithm in Complex Situations
原文传递
导出
摘要 为提高复杂情况下目标跟踪的稳健性,提出一种自适应特征更新的目标跟踪算法。对目标提取分级深度特征和手工设计特征,通过不同线性组合方式进行多特征融合,构建多个融合特征器;对不同融合特征器进行可信度判定,选择可信度最高的融合特征作为当前帧的跟踪特征,构建位置相关滤波器,预测出当前帧的目标位置;对跟踪结果进行可靠性检测,可靠性低于阈值则启动融合特征器更新机制,加入时序信息和语义信息进行重跟踪,降低了模型的误差累积。在OTB-2013和OTB-2015数据库上进行测试,结果表明,与近年来比较流行的9种算法相比,提出的算法在快速运动、背景杂波、运动模糊、形变等复杂情况下具有较高的成功率和较好的稳健性。 To improve the robustness of object tracking in complex situations,a new algorithm based on adaptive feature updating is proposed.First,hierarchical deep and hand-crafted features are simultaneously extracted from the object,and multiple fusion feature experts are constructed through multi-feature fusion by using different linear combination methods.Second,the credibility score of each expert is computed and the highest score is selected as the tracking feature of the current frame.A position correlation filter is then constructed to predict the frame′s target position.Finally,the reliability of the tracking result is detected.When this reliability is found to be lower than a certain threshold,the fusion feature updating mechanism is initiated,and the temporal and semantic informations are added to the re-track,which reduces the error accumulation of the model.The proposed algorithm is tested on OTB-2013 and OTB-2015 datasets,and the obtained results are compared with those of 9 recently developed popular algorithms.Our proposed algorithm demonstrates a higher success rate and better robustness in complex situations,such as fast motion,background clutter,motion blur,and deformation,than existing algorithms.
作者 尹宽 李均利 李丽 储诚曦 Yin Kuan;Li Junli;Li Li;Chu Chengxi(College of Computer Science,Sichuan Normal University,Chengdu,Sichuan 610101,China;Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo,Zhejiang 315211,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2019年第11期227-242,共16页 Acta Optica Sinica
基金 国家自然科学基金(61403266,61403196)
关键词 机器视觉 目标跟踪 分级深度特征 相关滤波 时序信息 machine vision object tracking hierarchical deep feature correlation filter temporal information
  • 相关文献

参考文献4

二级参考文献15

共引文献218

同被引文献57

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部