期刊文献+

基于栅格图法的移动物流机器人全局路径规划方法 被引量:8

Global Path Planning Method for Mobile Logistics Robot Based on Raster Graph Method
下载PDF
导出
摘要 针对传统方法无法有效解决物流机器人一次访问若干点的全局路径规划问题。为此,提出一种基于栅格图法的移动物流机器人全局路径规划方法。通过栅格图法构造容易被移动物流机器人理解的仓储环境。在不考虑点和点间准确路径的情况下,按照移动物流机器人初始点是否处于出口,把全局路径规划问题划分成典型的TSP问题和TS-TSP问题,针对典型的TSP问题,将全局路径点看作种群个体,针对TS-TSP问题,将中间节点看作种群个体,以此构建移动物流机器人全局路径规划数学模型,并通过势场蚁群法对其进行求解,获取全局路径点的最优访问顺序,在此基础上,通过A*法计算准确的移动物流机器人全局路径规划结果。实验结果表明,采用所提方法收敛速度快,可快速得到全局最优解,且全局路径规划结果所需时间少,实用性强。 The traditional method can not effectively solve the global path planning problem of the logistics robot at one visit.Therefore,a global path planning method for mobile logistics robot based on raster graph is proposed.It is easy to be understood by the mobile logistics robot through raster graph.In the case of the exact path between points and points,the global path planning problem is divided into typical TSP and TS-TSP problems according to whether the initial point of the mobile logistics robot is at the initial point or not.In view of the typical TSP problem,all the path points are considered as the population individual,and the intermediate nodes are considered as the population for the TS-TSP problem.Through the potential field ant colony method,the optimal access order of the path point is obtained.On this basis,the A*method is used to calculate the global path planning results of the accurate mobile logistics robot.The experimental results show that the convergence speed of the proposed method is fast,and the global optimal solution can be obtained quickly,and the result of global path planning needs less time and is more practical.
作者 葛伟宽 王保平 Ge Weikuan;Wang Baoping(College of Science,Huzhou Normal University,Huzhou Zhejiang 313000,China;Huzhou Kebang Automation Research Institute,Huzhou Zhejiang 313000,China)
出处 《科技通报》 2019年第11期72-75,80,共5页 Bulletin of Science and Technology
关键词 栅格图法 移动物流机器人 批量 拣选路径 规划 grid diagram method mobile logistics robot batch picking path planning
  • 相关文献

参考文献7

二级参考文献70

共引文献144

同被引文献80

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部