期刊文献+

基于机器学习的汽车发动机故障诊断探究 被引量:3

Research on Fault Diagnosis of Automotive Engine Based on Machine Learning
下载PDF
导出
摘要 随着科学技术的不断进步,传统的汽车发动机故障诊断技术已经不能满足现下的市场需求,而机器学习中支持向量机(SVM)的应用有着极为重要的价值。支持向量机在解决非线性、高维模式识别及小样本问题中拥有很多优势,而且构建的模型需求简单,仅仅需要一些好的参数及进行后的小样本就可以建立模型,以此进行发动机故障诊断。 With the continuous progress of science and technology,the traditional fault diagnosis technology of automobile engine can not meet the current market demand.The application of Support Vector Machine(SVM)in machine learning plays an extremely important role.Support Vector Machine(SVM)has many advantages in solving non-linear,high-dimensional pattern recognition and small sample problems.Moreover,the model built by support vector machine is simple,and only some good parameters and small samples are needed to build the model,so as to carry out engine fault diagnosis.
作者 顾孜轶 GU Ziyi(Tongji University,Shanghai 200071)
机构地区 同济大学
出处 《现代制造技术与装备》 2019年第11期98-99,共2页 Modern Manufacturing Technology and Equipment
关键词 支持向量机 汽车发动机 故障诊断 support vector machine automotive engine fault diagnosis
  • 相关文献

参考文献3

二级参考文献26

  • 1赵冲冲,廖明夫,于潇.基于支持向量机的旋转机械故障诊断。[J].振动.测试与诊断,2006,26(1):53-57. 被引量:21
  • 2Simon Haykin.Neural Networks:A Comprehensive Foundation,(Second Edition)[M].Beijing:China Machine Press,2004.
  • 3Chiang Leo H,Kotanchek Mark E,Kordon Arthur K.Fault Diagnosis Based on Fisher Discriminant Analysis and Support Vector Machines[J].Computers & Chemical Engineering,2004,28(8):1389~1401.
  • 4Samanta B,Al-Balushi K R,Al-Araimi S A.Artificial Neural Networks and Support Vector Machines with Genetic Algorithm for Bearing Fault Detection[J].Engineering Applications of Artificial Intelligence,2003,16(7):657~665.
  • 5Jack L B,Nandi A K.Support Vector Machines for Detection and Characterization of Rolling Element Bearing Faults[J].Journal of Mechanical Engineering Science,2001,215(9):1065~1074.
  • 6VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7ISO7919 International Standard[S].Switzerland:[s.n.],1996.
  • 8Vapnik V N.An overview of statistical learning theory [J].Neural Networks,IEEE Transactions on,1999,10(5):988-999.
  • 9Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2) :121-167.
  • 10Jack L B,Nandi A K.Fault detection using support vector machines and artificial neural networks [J].Mechanical Systems and Signal Processing,2002,16(2/3):373-390.

共引文献100

同被引文献15

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部