摘要
随着科学技术的不断进步,传统的汽车发动机故障诊断技术已经不能满足现下的市场需求,而机器学习中支持向量机(SVM)的应用有着极为重要的价值。支持向量机在解决非线性、高维模式识别及小样本问题中拥有很多优势,而且构建的模型需求简单,仅仅需要一些好的参数及进行后的小样本就可以建立模型,以此进行发动机故障诊断。
With the continuous progress of science and technology,the traditional fault diagnosis technology of automobile engine can not meet the current market demand.The application of Support Vector Machine(SVM)in machine learning plays an extremely important role.Support Vector Machine(SVM)has many advantages in solving non-linear,high-dimensional pattern recognition and small sample problems.Moreover,the model built by support vector machine is simple,and only some good parameters and small samples are needed to build the model,so as to carry out engine fault diagnosis.
作者
顾孜轶
GU Ziyi(Tongji University,Shanghai 200071)
出处
《现代制造技术与装备》
2019年第11期98-99,共2页
Modern Manufacturing Technology and Equipment
关键词
支持向量机
汽车发动机
故障诊断
support vector machine
automotive engine
fault diagnosis