期刊文献+

束流强度分布与膜厚的关系 被引量:1

Relationship Between Beam Intensity Distribution and Film Thickness
下载PDF
导出
摘要 为了验证束流强度分布对膜厚的影响,通过束流分布的理论计算模拟出外延膜的分布,并与外延实验样品数据进行了对比,结果证实了我们的猜测,可以部分解释膜厚分布不均的情况。利用公式计算束流强度的分布,得出最薄点应为最厚点的73.26%。实验测试的膜厚的最厚点为8.1582 m,最薄点为5.9362 m,比例为72.76%,与计算结果基本相符。因此,可以确定束流强度分布对膜厚有一定的影响。但实际材料的膜厚不仅受束流分布的影响,还与其他工艺参数相关。由于采用了理论计算与实验相互对比的方法,比单纯实验所得出的结果更准确可靠。 In order to verify the influence of beam intensity distribution on film thickness,the distribution of epitaxial film was simulated by theoretical calculation of beam current distribution,and the data were compared with the samples of epitaxial experiment.The results confirmed our guess,which can partially explain the uneven distribution of film thickness.Using the formula to calculate the distribution of beam intensity,the thinnest point should be 73.26%of the thickest point.While the thickest point of the experimentally tested film thickness was 8.1582 m,the thinnest point was 5.9362 m,the ratio was 72.76%,which was basically consistent with the calculation results.Therefore,it can be determined that the beam intensity distribution has a certain influence on the film thickness.However,the film thickness of the actual material is not only affected by the beam distribution,but also related to other process parameters.Due to the comparison between theoretical calculations and experiments,the results obtained are more accurate and reliable than those obtained by simple experiments.
作者 李震 王文燕 强宇 王丛 高达 LI Zhen;WANG Wen-yan;QIANG Yu;WANG Cong;GAO Da(North China Institute of Optoelectronic Technology,Beijing 100015,China)
出处 《红外》 CAS 2019年第9期23-27,共5页 Infrared
关键词 MBE 硅基衬底 束流分布 MBE silicon substrate beam distribution
  • 相关文献

参考文献8

二级参考文献30

  • 1史衍丽.国外量子阱红外焦平面探测器的发展概况[J].红外技术,2005,27(4):274-278. 被引量:13
  • 2周立庆.碲镉汞外延用衬底材料的现状和发展[J].激光与红外,2005,35(11):808-811. 被引量:12
  • 3陈路,傅祥良,巫艳,吴俊,王伟强,魏青竹,王元樟,何力.Si基大面积碲镉汞分子束外延研究[J].激光与红外,2006,36(11):1051-1053. 被引量:1
  • 4P S, Wijewarnasuriya, G Brill, et al. LWIR MBE HgCdTe photovoltaic detectors grown on Si composite substrates [ J ]. SPIE,2004,5406:323 - 331.
  • 5W J Everson,C K Ard, et al. Etch pit characterization of CdTe and CdZnTe substrate for use in mercury cadmium telluride epitaxy [ J]. J. Electron. Mater, 1995, 24: 505 - 510.
  • 6J M Peterson, J A Franklin, et al. High-quality large-area MBE HgCdTe/Si [ J ]. Journal Electronic Materials, 2006, 35(6) : 1283 - 1286.
  • 7L A Almeida, L Hirsch, et al. Improved morphology and crystalline quality of MBE CdZnTe/Si [ J ]. Journal Elec- tronic Materials ,2001,30(6) :608 - 610.
  • 8N K Dhar, C E C Wood, et al. Heteroepitaxy of CdTe on (211) Si using crystallized amorphous ZnTe templates [ J ]. J. Vac. sci. Technol, 1996, B14 (3) :2366 - 2372.
  • 9Y Chen, S Farrell, et al. Dislocation reduction in CdTe/Si by molecular beam epitaxy through in - situ annealing [ J]. Journal of Crystal Growth ,2008,310:5303 - 5307.
  • 10M Kawano,A Ajisawa, et al. HgCdTe and CdTe ( - 1 - 13)B growth on Si( 112)5°off by MBE[ J]. Appl. Phy. Lett. , 1996,69 ( 19 ) :2876 - 2879.

共引文献95

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部