期刊文献+

基于深度学习的Wi-Fi网络入侵检测方法 被引量:3

Wi-Fi intrusion detection method based on deep learning
下载PDF
导出
摘要 提出一种基于深度信念网络(DBN)的Wi-Fi网络入侵检测模型。使用SMOTE算法对数据样本中的异常数据和正常数据进行数量平衡,使用降噪自编码网络(DAE)对平衡后的数据进行降维,消除无关或冗余特征降低检测建模规模。在AWID数据集上进行实验,实验结果表明,与其它基于浅层学习算法的检测方法相比,所提方法可有效精简数据特征,降低检测时间,在检测精度和误报率方面体现出了更优性能。 A Wi-Fi network intrusion detection model based on deep belief network(DBN)was proposed.SMOTE was used to balance the data samples to improve the the classification detection performance.To reduce the dimensionality and redundancy of the feature vectors,denosining autoencoder network(DAE)was used to reduce the dimension of the feature vectors.Results of experiments on the AWID dataset show that compared with other shallow learning algorithms,the proposed model can effectively simplify data features and reduce detection time and false alarm rate,and it also shows better performance in detection accuracy.
作者 刘明峰 郭顺森 韩然 侯路 吴珺 田小川 LIU Ming-feng;GUO Shun-sen;HAN Ran;HOU Lu;WU Jun;TIAN Xiao-chuan(Qingdao Power Supply Company,State Grid Shandong Electric Power Company,Qingdao 266002,China)
出处 《计算机工程与设计》 北大核心 2019年第12期3394-3400,共7页 Computer Engineering and Design
关键词 深度信念网络 降噪自编码网络 数据降维 入侵检测 WI-FI网络 deep brief network(DBN) denoising autoencoder(DAE) dimension reduction intrusion detection Wi-Fi network
  • 相关文献

参考文献1

二级参考文献22

  • 1J. Han and M. Kamber, Data Mining: Concepts and Techniques. San Francisco, CA, USA: Morgan Kaufinann, 2001.
  • 2S. R. Safavian and D. Landgrebe. A survey of decision tree classifier methodology, IEEE Transactions on Systems, Man and Cybernetics, vol. 21, no. 3, pp. 660-674, 1991.
  • 3J. Cheng, U. M. Fayyad, K. B. Irani, and Z. Qian. hnproved decision trees: A generalized version of ID3, in Proc. Fifth Int. Conf. Machine Learning, 1988, pp. 100-107.
  • 4J. R. Quinlan, Learning efficient classification procedures and their application to chess end games, in Machine Learning. Springer, 1983, pp. 463-482.
  • 5J. R. Quinlan, Induction of decision trees, Machine Learning, vol. 1, no. 1, pp. 81-106, 1986.
  • 6J. R. Quinlan, C4.5: Programs for Machine Learning, vol. 1. Morgan Kaufmann, 1993.
  • 7J. R. Quinlan, Data mining tools see5 and C5.0, http://www.rulequest.com/see5-info.html, 2004.
  • 8L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees. CRC Press, 1984.
  • 9G. V. Kass, An exploratory technique for investigating large quantities of categorical data, Applied Statistics, vol. 29, no. 2, pp. 119-127, 1980.
  • 10W.-Y. Loh and N. Vanichsetakul, Tree-structured classification via generalized discriminant analysis, Journal of the American Statistical Association, vol. 83, no. 403, pp. 715-725, 1988.

共引文献8

同被引文献31

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部