期刊文献+

Detection of ocean internal waves based on Faster R-CNN in SAR images 被引量:3

Detection of ocean internal waves based on Faster R-CNN in SAR images
下载PDF
导出
摘要 Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks. Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR) remote sensing images. Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic. In this paper, ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN) framework; for this purpose, 888 internal wave samples are utilized to train the convolutional network and identify internal waves. The experimental results demonstrate a 94.78% recognition rate for internal waves, and the average detection speed is 0.22 s/image. In addition, the detection results of internal wave samples under dif ferent conditions are analyzed. This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第1期55-63,共9页 海洋湖沼学报(英文)
基金 Supported by the National Natural Science Foundation of China(No.61471136) the Special Project for Global Change and Air-sea Interaction of Ministry of Natural Resources(No.GASI-02-SCS-YGST2-04) the Chinese Association of Ocean Mineral Resources R&D(No.DY135-E2-4)
关键词 ocean internal waves FASTER regions with convolutional NEURAL NETWORK features (Faster R-CNN) convolutional NEURAL NETWORK synthetic APERTURE radar (SAR) image region proposal NETWORK (RPN) ocean internal waves faster regions with convolutional neural network features(Faster R-CNN) convolutional neural network synthetic aperture radar(SAR) image region proposal network (RPN)
  • 相关文献

参考文献2

二级参考文献15

  • 1谢明鸿,张亚飞,付琨.基于种子点增长的SAR图像海岸线自动提取算法[J].中国科学院研究生院学报,2007,24(1):93-98. 被引量:29
  • 2郝程鹏,侯朝焕.一种K-分布杂波背景下的双参数恒虚警检测器[J].电子与信息学报,2007,29(3):756-759. 被引量:10
  • 3陈德元,凃国防.一种基于小波变换的SAR图像船舰检测的新算法[J].电子与信息学报,2007,29(4):855-858. 被引量:6
  • 4Eldhuset K. An automatic ship and ship wake detection system for spaceborne SAR images in coo.stal regions [J].IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4): 1010-1019.
  • 5Blake A P, Blacknell D, and Oliver C J. Sea clutter analysis and its resolution dependence[C]. Radar conference 97, Edinburgh, UK, Oct.14-16, 1997: 124-128.
  • 6Robertson N, ct al.. Ship surveillance using RADARSAT ScanSAR images[J]. Ship Detection in Coastal Waters Workshop 2000, NS, Canada, 31 May, 1&2 June, 2000: 41-45.
  • 7Crisp D J. The State-of-art in ship detection in synthetic aperture radar image[R]. Defence Science and Technology Organization (DSTO)Information Science Laboratory, Edinburgh, Australia, 2004: 16-54.
  • 8Du Tao,Chin J Oceanol Limnol,2000年,18卷,1期,18页
  • 9Du Tao,Chin J Oceanol Limnol,1999年,17卷,2期,125页
  • 10Du Tao,Chin J Oceanol Limnol,1999年,17卷,3期,252页

共引文献80

同被引文献41

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部