摘要
针对钻井现场视频监控人工值守工作量大、存在遗漏、海量视频数据缺乏实时报警等问题,在识别筛选严重事故后果及高概率违章事件的基础上,利用卷积神经网络算法研发视频智能分析技术,开发了钻井视频智能分析与报警系统,研制了配套的便携式视频监控终端及视频分析服务器,对现场直接作业、溢流监测坐岗等过程进行实时行为检测。现场应用表明,该系统可有效识别抽烟、人员离岗等现场典型违章行为,提升了钻井安全管理智能化水平。
For drilling site video monitoring manual duty workload,there are omissions and massive video data lack of real-time alarm,on the basis of the identification and screening of serious accident consequences and high probability of violations,the convolutional neural network algorithm is used to develop video intelligent analysis technology,develop the drilling video intelligent analysis and alarm system,and develop the supporting portable video monitoring terminal and video analysis server,so as to carry out real-time behavior detection in the process of direct field operation and overflow monitoring.It is shown that the system can effectively identify typical violations such as smoking and staff leave,and also improve the level of drilling management intelligence.
作者
李千登
王廷春
郝文亮
张成德
崔靖文
LI Qiandeng;WANG Tingchun;HAO Wenliang;ZHANG Chengde;CUI Jingwen(SINOPEC Research Institute of Safety Engineering Qingdao,Shandong 266104;不详)
出处
《工业安全与环保》
2019年第12期46-49,共4页
Industrial Safety and Environmental Protection
基金
国家重点研发计划(2018YFC0809300)
山东省重大科技创新工程项目(2018YFJH0802)
中国石化科技部项目(317019-2)
关键词
钻井作业
违章行为
视频监控
智能分析
系统开发
drilling operation
violation
video surveillance
intelligent analysis
system development