期刊文献+

多孔碳添加量对溶胶凝胶-碳热还原法制备磷酸钒锂正极材料的电化学影响

Effects of the Porous Carbon Added Content on Electrochemical Performance of Lithium Vanadium Phosphate as Cathode Materials Synthesized by Sol-gel and Carbon Thermal Reduction Method
下载PDF
导出
摘要 本工作采用一种具有良好导电性能的多孔结构碳材料与磷酸钒锂通过溶胶凝胶-碳热还原法进行复合,研制出一种锂离子电池正极的新型复合材料。新型电极在0.5C倍率下初始比容量为111.0 mA·h·g^-1,150圈循环容量保持率为99.2%。在10C倍率循环下复合正极仍有79.8 mA·h·g^-1比容量和71.9%容量保持率,展示出良好的快充/放性能。复合材料的制备工艺简单,其电化学性能优异和较高含量的磷酸钒锂(LVP)含量符合锂离子电池正极材料的产业实用化的要求,该材料的研发为快充电池工业化提供了一种具有实际意义的材料。 In this paper,a novel composite as cathode material for lithium-ion batteries is preparaed by using a sol-gel and carbon thermal reduction me-thod to combine a good electrical conductive porous carbon with lithium vanadium phosphate.The new cathode has an initial specific capacity of 111.0 mA·h·g^-1,and a capacity retention rate of 99.2%after 150 cycles at a rate of 0.5C.The composite cathode still has a specific capacity of 79.8 mA·h·g^-1 and a capacity retention of 71.9%at 10C,showing a good fast charge/discharge performance.The simple preparation process,excellent electrochemical performance and high LVP content satisfies the requirements of the industrial applications for cathode materials on lithium-ion battery,and the composite is a effective material for the industrialization of the fast charge battery.
作者 欧先国 周玉山 毛文峰 顾晓瑜 长世勇 裴锋 OU Xianguo;ZHOU Yushan;MAO Wenfeng;GU Xiaoyu;CHANG Shiyong;PEI Feng GAC(Automotive Research&Development Center,Guangzhou 510641)
出处 《材料导报》 EI CAS CSCD 北大核心 2019年第S02期38-42,共5页 Materials Reports
关键词 多孔碳 溶胶凝胶-碳热还原法 磷酸钒锂 正极材料 porous carbon sol-gel and carbon thermal reduction method lithium vanadium phosphate cathode materials
  • 相关文献

参考文献3

二级参考文献72

  • 1HanA R, Kim T W, Park D H, Hwang S J, Choy J H. J. Phys. Chem. C, 2007, 111 : 11347--11352.
  • 2Zama K, Kumeuchi T, Enomoto S, Daidoji T. Nec Technical Journal, 2006, 1:68--72.
  • 3Zama K, Suzuki S, Kasai M, Shioya T. Nec Technical Journal, 2009, 4:86--89.
  • 4Zhang L, Zhang P X, Fan Z Z, Ren X Z, Zhang D Y, Liu K. Powder Technology and Application Ⅲ, 2011, 158 : 262--272.
  • 5Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. Electrochim. Acta, 2010, 55:8821--8828.
  • 6XieJL, HuangXA, ZhuZ B, DaiJ H. Ceram. Int., 2010, 36 : 2485--2487.
  • 7Doan T N L, Taniguchi I. J. Power Sources, 2011, 196: 1399--1408.
  • 8Hong J A, Wang F, Wang X L, Graetz J. J. Power Sources, 2011, 196:3659--3663.
  • 9Zhou X F, Wang F, Zhu Y M, Liu Z P. J. Mater. Chem., 2011, 21 : 3353--3358.
  • 10Saravanan K, Balaya P, Reddy M V, Chowdari B V R, Vittal J J. Energy Environ. Sci. , 2010, 3 : 457--464.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部