期刊文献+

基于相对贡献率的噪声裁剪算法

Noise Clipping Algorithm Based on Relative Contribution Rate
下载PDF
导出
摘要 提出了一种基于相对贡献率的噪声裁剪算法(Class noise cutting, CNC)。通过计算得到特征对于主题的相对贡献率,利用特征区分度评分挑选对于当前主题分类最有价值的特征集,选出相应的候选类别,减少候选类别集,提高了分类准确率,加快了分类器的响应速度。与另一种噪声裁剪算法(Eliminating class noise, ECN)比较,CNC具有更高的准确率,由于具有更精简的特征维度词典以及更优异的候选类别集使得响应速度大大加快。 This paper presents a class noise cutting algorithm(Class noise cutting, CNC) based on relative contribution rate. The algorithm calculates the relative contribution rate of features to the theme. The most valuable feature set is selected by using features distinguish rating. The corresponding candidate categories for each feature are selected, to reduece the candidate category set, improves the classification accuracy, and speed up the response speed of the classifier. Compared with another ECN noise cutting algorithm(Eliminating the class whose), CNC-has higher accuracy and because of its simpler feature dimension dictionary and better candidate category set, the response speed is greatly accelerated.
作者 刘朔瑜 戴月明 Liu Shuoyu;Dai Yueming(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2019年第12期2721-2730,共10页 Journal of System Simulation
基金 国家自然科学基金(61973138)
关键词 相对贡献率 类别噪声裁剪 层次结构分类 特征选择 relative contribution rate class noise cutting hierarchical classification feature selection
  • 相关文献

参考文献2

二级参考文献64

  • 1张加民.标题预示性的元功能视角[J].外语教学,2004,25(6):36-39. 被引量:7
  • 2袁时金,李荣陆,周水庚,胡运发.层次化中文文档分类[J].通信学报,2004,25(11):55-63. 被引量:6
  • 3王强,王晓龙,关毅,徐志明.K-NN与SVM相融合的文本分类技术研究[J].高技术通讯,2005,15(5):19-24. 被引量:10
  • 4凌云,刘军,王勋.多层次web文本分类[J].情报学报,2005,24(6):684-689. 被引量:12
  • 5谭金波.一种改进的文档层次分类方法[J].现代图书情报技术,2007(2):56-59. 被引量:3
  • 6Mitchell T M.Machine Learning.New York:McGraw Hill,1996.112-141
  • 7Sebastiani F.Text categorization.In:Proceedings of Text Mining and Its Applications to Intelligence,CRM and Knowledge Management.Southampton,UK,WIT Press,2005.109-129
  • 8Masand B,Linoff G,Waltz D.Classifying news stories using memory based reasoning.In:Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Copenhagen,Denmark,ACM Press,1992.59-65
  • 9Lam W,Ho C Y.Using a generalized instance set for automatic text categorization.In:Proceedings of the 21st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'98).Melbourne,Australia,ACM Press,1998.81-89
  • 10Quinlan J R.Induction of decision trees.Machine Learning,1986,1(1):81-106

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部