摘要
提出了一种基于相对贡献率的噪声裁剪算法(Class noise cutting, CNC)。通过计算得到特征对于主题的相对贡献率,利用特征区分度评分挑选对于当前主题分类最有价值的特征集,选出相应的候选类别,减少候选类别集,提高了分类准确率,加快了分类器的响应速度。与另一种噪声裁剪算法(Eliminating class noise, ECN)比较,CNC具有更高的准确率,由于具有更精简的特征维度词典以及更优异的候选类别集使得响应速度大大加快。
This paper presents a class noise cutting algorithm(Class noise cutting, CNC) based on relative contribution rate. The algorithm calculates the relative contribution rate of features to the theme. The most valuable feature set is selected by using features distinguish rating. The corresponding candidate categories for each feature are selected, to reduece the candidate category set, improves the classification accuracy, and speed up the response speed of the classifier. Compared with another ECN noise cutting algorithm(Eliminating the class whose), CNC-has higher accuracy and because of its simpler feature dimension dictionary and better candidate category set, the response speed is greatly accelerated.
作者
刘朔瑜
戴月明
Liu Shuoyu;Dai Yueming(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2019年第12期2721-2730,共10页
Journal of System Simulation
基金
国家自然科学基金(61973138)
关键词
相对贡献率
类别噪声裁剪
层次结构分类
特征选择
relative contribution rate
class noise cutting
hierarchical classification
feature selection