期刊文献+

燃烧条件下格构增强泡桐木夹芯板热传导模型 被引量:1

Heat Conduction Model of Unidirectional Lattice Reinforced Sandwich Panels Exposed to Fire
下载PDF
导出
摘要 以单向格构增强泡桐木夹芯板为火灾试验的研究对象,建立了夹芯板的一维热传导模型,并用有限差分法计算了夹芯板的温度梯度;同时,通过夹芯板火灾试验进行了模型验证.结果表明:夹芯板在不同时间段内沿厚度方向存在明显的温度梯度;夹芯板在承受60 min的火灾或者高温时,其受热面板与芯材均发生了不同程度的热分解,材料炭化并形成炭化层,阻止了热量传导;夹芯板中性轴以上部分的变化较小,性能稳定,具有一定承载能力.另外,通过分析受热过程中芯材与格构的温度变化,验证了芯材对格构性能的影响. The unidirectional lattice reinforced paulownia wood sandwich board was studied in the fire test,and its one-dimensional heat conduction model was established.The finite difference method was used to compare the calculated results of the heat conduction model with the experimental results.It shows that the two results are in good agreement.According to the fire test and finite element simulation of sandwich panels,it is found that the sandwich plate has obvious temperature gradient along the thickness direction in different time periods.When the exposure time is larger than 60 min,the heat decomposition of skins and core materials occurs,meanwhile the heat transfer is blocked due to the charring effects.Moreover,the influence of core material on lattice performance is verified by analyzing the temperature change of core material and lattice structure during heating process.
作者 王璐 李晓平 彭宇 马文现 WANG Lu;LI Xiaoping;PENG Yu;MA Wenxian(College of Civil Engineering,Nanjing Tech University,Nanjing 211816,China;Nanjing Jianye District Government Office,Nanjing 210009,China)
出处 《建筑材料学报》 EI CAS CSCD 北大核心 2019年第6期901-907,共7页 Journal of Building Materials
基金 国家重点研发计划(2017YFC0703001) 国家自然科学基金面上项目(51678297)
关键词 复合材料 泡桐木 夹芯结构 一维热传导模型 composite material paulownia wood sandwich structure one-dimensional heat conduction model
  • 相关文献

参考文献2

二级参考文献76

  • 1沙吾列提.拜开依,叶列平,杨勇新,庄江波.预应力CFRP布加固钢筋混凝土梁的施工技术[J].施工技术,2004,33(6):23-24. 被引量:34
  • 2汤国栋,汤羽,冯广占.中国GRP/COM桥梁的研究与实践[J].成都科技大学学报,1995(6):69-80. 被引量:9
  • 3中国工程建设标准化协会编.CECS146碳纤维片材加固混凝土结构技术规程[S].北京:中国建筑工业出版社,2003.1-33.
  • 4岳清瑞.纤维增强塑料(FRP)在土木工程结构中的应用技术的进展[A].岳清瑞主编.第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会议论文集[C].北京:清华大学出版社,2002.18-22.
  • 5Dunker K F,Rabbat B G. Why American bridges are crumbling[J]. Scientific American, 1993,(3):31~37.
  • 6Seible F. Advanced composites materials for bridges in the 21st century [A]. In:Elbadry M M, eds. Advanced Composite Materials Bridges and Structures [C]. New York: Elsevier, 1996. 17~40.
  • 7Wang Quanfeng.Lateral buckling of thin-walled open members with shear lag using optimization techniques[J]. Int. J. of Solid and Structures, 1997, 34(11): 1 343~1 352.
  • 8冯鹏 叶列平.FRP结构和FRP组合结构在结构工程中的应用与发展[A].岳清瑞主编.第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集[C].北京:清华大学出版社,2002.51-63.
  • 9Yang Q S, Qin Q H, Zheng D H. Analytical and numerical investigation of interfacial stresses of FRP-concrete hybrid structure[J]. Composite Structures, 2002, 57:221-226
  • 10Davol A, Burgueno R, Seible F. Flexural behavior of circular concrete filled FRP shells [J]. Journal of Structural Engineering, ASCE, 2001, 127 (7): 810-817

共引文献660

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部