期刊文献+

真实刀刃轨迹下周铣加工柔性铣削力建模及仿真 被引量:3

Modeling and Simulation of Flexible Milling Forces in Peripheral Milling Based on Real Tooth Trajectory
下载PDF
导出
摘要 针对周铣加工过程,在考虑实际切削中刀具的运动轨迹和弹性变形的情况下,研究了切削力计算模型和方法。通过对周铣过程中刀刃切削轨迹进行分析,推导出切削刃真实运动轨迹下的切削厚度计算方法;在分析了刀具变形与瞬时切削厚度的相互作用机理后,提出了一种真实刀刃轨迹下,考虑周铣时刀具瞬时变形和上一齿切削残留高度的瞬时切削厚度模型;进而推导出两层嵌套的切削力计算模型。根据以上数学模型进行了周铣铣削力的仿真计算,并通过实验验证了模型和仿真的正确性。 Considering the trajectory and elastic deformation of the tool during actual cutting in the peripheral milling process,the calculation model and method of cutting force are studied.By analyzing path of the cutting edge in the peripheral milling,the calculation method of cutting thickness under the real trajectory of the cutting edge is derived.The interaction mechanism of tool deformation and instantaneous chip thickness are analyzed,and then the instantaneous chip thickness model considering the instantaneous tool deformation and the residual height under the real cutting edge trajectory are proposed.A two-layer nested cutting force calculation model is proposed.According to the above mathematical model,the simulation calculation of the peripheral milling force is carried out,and the correctness of the model and simulation is verified by experiments.
作者 黄贤通 赵军 HUANG Xian-tong;ZHAO Jun(Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE,School of Mechanical Engineering,Shandong University,Jinan 250061,China;National Demonstration Center for Experimental Mechanical Engineering Education,Shandong University,Jinan 250061,China)
出处 《组合机床与自动化加工技术》 北大核心 2019年第12期15-17,21,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 山东省重点研发计划(公益性科技攻关类)资助(2018GGX103043)
关键词 瞬时切削厚度 真实刀刃轨迹 刀具变形 铣削力建模 instantaneous chip thickness real tooth trajectory cutter deflection milling force modeling
  • 相关文献

参考文献3

二级参考文献21

  • 1倪其民.复杂曲面自适应加工关键技术研究:[博士学位论文].上海:上海交通大学,2000..
  • 2SPIEWAK S. An improved model of the chip thickness in milling [J]. Annals of the CIRP, 1995, 44(1):39-42.
  • 3MARTELLOTTI M E. An analysis of the milling process [J].Trans. ASME, 1941, 63: 677-700.
  • 4MARTELLOTTI M E. An analysis of the milling process-- part 2 down milling [J]. Trans. ASME, 1945, 67: 233-251.
  • 5MONTGOMERY D, ALTINTAS Y. Mechanism of cutting force and surface generation in dynamic milling [J].ASMEJ. Eng. Ind., 1991, 113: 160-168.
  • 6ALTINTAS Y, MONTGONERY D, BUDAK E. Dynamic peripheral milling of flexible structures [J]. ASME J. Eng. Ind., 1992, 114: 137-145.
  • 7RAO V S, RAO P V M. Modelling of tooth trajectory and process geometry in peripheral milling of curved surfaces [J]. International Journal of Machine Tools & Manufacture, 2005, 45: 617-630.
  • 8LI H Z, LIU K, LI X P. A new method for determining the undeformed chip thickness in milling [J]. Journal of Materials Processing Technology, 2001, 113: 378-384.
  • 9LOTFI S, BOUZID W, ZGHAL A. Chip thickness analysis for different tool motions for adaptive feed rate [J]. Journal of Materials Processing Technology, 2008, 204: 213-220.
  • 10ENGIN S, ALTINTAS Y. Mechanics and dynamics of general milling cutters. Part I: Helical end mills [J]. International Journal of Machine Tools & Manufacture, 2001, 41: 2195-2212.

共引文献47

同被引文献39

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部