期刊文献+

纳米磨削单晶和多晶3J33的分子动力学仿真 被引量:2

Molecular Dynamics Simulation of Monocrystalline and Polycrystalline 3J33 in Nano Grinding
下载PDF
导出
摘要 采用Voronoi算法构造多晶体3J33模型,再采用分子动力学(molecular dynamics,MD)实现单晶和多晶3J33的纳米磨削仿真,利用嵌入式原子势能(embeded atomic momentum,EAM)和Morse势函数对工件内部以及工件和磨粒之间的原子作用力进行计算。研究了单晶和多晶在不稳定和稳定两个阶段下纳米磨削过程的特点,结果表明,多晶体由于晶界的存在会阻止磨屑像单晶体一样沿直线行进,并且晶界会保护内部晶粒使其不易变形。探究了磨削力和磨削温度随磨削参数的变化情况,结果表明,单晶的切向力和法向力都大于多晶,但是多晶的磨削力波动比单晶大,磨削温度也比单晶高。 Voronoi algorithm was used to construct the polycrystalline 3J33 model.Molecular dynamics(MD)was used to simulate the grinding of monocrystalline and polycrystalline 3J33 nanometer.The embeded atomic momentum(EAM)and Morse potential functions were used to calculate the atomic forces inside the workpiece and between the workpiece and the grit.The characteristics of the nanometer grinding process of monocrystalline and polycrystalline in unstable and stable stages were studied.The results show that the presence of polycrystalline grain boundary will prevent the grinding chip from forwarding in straight line like monocrystalline,and the grain boundary will protect the inner grain from easy deformation.The grinding forces and grinding temperature with the change of grinding distance were studied.The results show that the tangential force and normal force of monocrystalline are greater than those of the polycrystalline,but the fluctuation of polycrystalline grinding force is bigger than that of monocrystalline,and the grinding temperature of polycrystalline is also higher than that of monocrystalline.
作者 伍丰 李蓓智 杨建国 WU Feng;LI Beizhi;YANG Jianguo(College of Mechanical Engineering,Donghua University,Shanghai 201620,China)
出处 《东华大学学报(自然科学版)》 CAS 北大核心 2019年第6期892-898,共7页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(51675096)
关键词 纳米磨削 分子动力学 单晶3J33 多晶3J33 nano grinding molecular dynamics monocrystalline 3J33 polycrystalline 3J33
  • 相关文献

参考文献2

二级参考文献15

  • 1Liang chi Zhang,H Tanaka.On the mechanics and physics in the nano-indentation of silicon monocrystals.JSME International Journal(series A),1999,42(4):546~559.
  • 2K.Nishimura,H.Yoshinaga,N.Ikawa and A.Hiraki.Relationship between Crystalline Defects and Wear of Nature Diamond.Jan.J.Appl.Phys.1996,35(3)234~327.
  • 3Decker R F, Eash J T, Goldman A J. 18% Nickel Maraging Steels . Trans ASM, 1962,55(1) :58.
  • 4Decker R F, Loreen S. Maraging Steels--the First 30 Years [C]//Maraging Steels-Recent Development and Applications. Warrendale, PA: TMS-AIME, 1988: 1.
  • 5Hamaker J C, Bayer A M. Applications of Maraging Steels [J]. Cobalt,1968(3) :3.
  • 6魏振宇.马氏体时效钢的强度[J].国外金属材料,1985(1):1.
  • 7Tsuguaki Oki, Masatoshi Sudo, Tsutumi Hiromori, et al. Process for Producing Maraging Steel Cylinder for Uranium Enriching Centrifugal Separator and Cylinders Produced Thereby: U.S.,3989553[P].1976 -11-26.
  • 8魏振宇.日本生产浓缩铀的离心机用材-马氏体时效钢[J].国外金属材料,1981(1):19.
  • 9Floreen S. Cobalt Free Maraging Steel: U.S.,4443254[P]. 1984-07-22.
  • 10Asayama Yuiteru, Higuchi Kazuaki. High Strength Cobalt Free Maraging Steel: U.S. ,4579590[P].1986-01-21.

共引文献33

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部