期刊文献+

基于广义反向学习的自适应约束差分进化算法 被引量:6

Adaptive Constrained Differential Evolution Algorithm by Using Generalized Opposition-Based Learning
下载PDF
导出
摘要 差分进化算法是一种基于“贪婪竞争”机制的全局寻优算法,其控制参量少、结构简单,具有较高的可靠性和收敛性,将约束处理机制引入到差分进化算法可以高效解决约束优化问题。提出一种基于广义反向学习的自适应约束差分进化算法,利用广义反向学习机制生成初始种群并执行种群"代跳"操作,采用自适应权衡模型将约束区分状态处理以及改进自适应变异操作对个体进行排序变异。通过与CDE、DDE、A-DDE、εDE以及DPDE算法进行试验比较以及对广义反向学习和改进自适应排序操作性能分析证明该算法具有较好的寻优精度及收敛速度。 Differential evolution is a global optimization algorithm based on greedy competition mechanism,which has the advantages of simple structure,less control parameters,higher reliability and convergence.Combining with the constraint-handling techniques,the constraint optimization problem can be efficiently solved.An adaptive differential evolution algorithm is proposed by using generalized opposition-based learning(GOBL-ACDE),in which the generalized opposition-based learning is used to generate initial population and executes the generation jumping.And the adaptive trade-off model is utilized to handle the constraints as the improved adaptive ranking mutation operator is adopted to generate new population.The experimental results show that the algorithm has better performance in accuracy and convergence speed comparing with CDE,DDE,A-DDE and.And the effect of the generalized opposition-based learning and improved adaptive ranking mutation operator of the GOBL-ACDE have been analyzed and evaluated as well.
作者 吴文海 郭晓峰 周思羽 刘锦涛 WU Wenhai;GUO Xiaofeng;ZHOU Siyu;LIU Jintao(Department of Aviation Control and Command, Qingdao Campus, Naval Aviation University, Qingdao 266041, China;College of Command and Control Engineering, Army Engineering University, Nanjing 210002, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2019年第5期1000-1010,共11页 Journal of Northwestern Polytechnical University
基金 国家重点研发计划(2018YFC0806900,2016YFC0800606,2016YFC0800310)资助
关键词 约束优化 差分进化算法 广义反向学习 自适应 权衡模型 排序变异操作 constrained optimization differential evolution generalized opposition-based learning adaptation trade-off model ranking mutation
  • 相关文献

参考文献2

二级参考文献15

  • 1A K Qin, V L Huang, P N Suganthan. Differential evolution algorithm with strategy adaptation for global numerical op- timization[J]. IEEE Transactions on Evolutionary Compu- tation,2009,13 (2) :398 -417.
  • 2D Thierens. An adaptive pursuit strategy for allocating op- erator probabilities [ A ]. Genetic and Evolutionary Compu- tation Conference ( GECCO 2005 ) [ C ]. Washington DC, USA: ACM Press ,2005. 1539 - 1546.
  • 3A Fialho, M Schoenauer, M Sebag, Analysis of adaptive operator selection techniques on the royal road and long k- path problems[ A ]. Genetic and Evolutionary Computation Conference ( GECCO 2009 ) [C ]. Montreal, Canada: ACM Press ,2009.779 - 786.
  • 4Wenyin Gong, Alvaro Fialho, Zhihua Cal, Hui Li. Adaptive strategy selection in differential evolution for numerical op- timization : An empirical study [ J ]. Information Sciences, 2011,181 (24) :5346 -5386.
  • 5Wenyin Gong, A. Fialho, Zhihua Cai, Adaptive strategy se- lection in differential evolutionl A]. Genetic and Evolution- ary Computation Conference ( GECCO "2010 )[ C ]. Port- land, USA: ACM Press ,2010.409 - 416.
  • 6Ke Li, A lvaro Fialho, Sam Kwong, Qingfu Zhang. Adap- tive operator selection with bandits for a multiobjective ev- olutionary algorithm based on decomposition[ J ]. IEEE Transactions on Evolutionary Computation, 2014,18 ( 1 ) : 114 - 130.
  • 7Jingqiao Zhang, Arthur C. Sanderso. JADE: Adaptive dif- ferential evolution with optional external archive[ J]. IEEE Transactions on Evolutionary Computation, 2009,13 ( 5 ) : 945 - 958.
  • 8Wenyin Gong, Zhihua Cai, Dingwen Liang. Adaptive rank-ing mutation operator based differential evolution for con- strained optimization [ J ]. IEEE Transactions on Cybernet- ics,2015,45 (4) :716 -727.
  • 9Yong Wang, Zixing Cai, Yuren Zhou, An adaptive tradeoff model for constrained evolutionary optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2008,12 ( 1 ) : 80 - 92.
  • 10Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization [ J ]. IEEE Transactions on Evo- lutionary Computation ,2000,4( 3 ) :284 - 294.

共引文献40

同被引文献60

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部