摘要
研究图的无圈非正常列表染色是当前图论领域的热点与难点问题.通过对极小反例G的结构分析,利用色延拓和色置换等方法证明了:最大度为4的非4-正则图是无圈(3,3)^*-可选的.所得结果推广了无圈非正常列表染色的若干结论.
It was investigated the acyclic improper list coloring problem which had been a difficult coloring problem so far.By analyzing the structure properties of the minimum counterexample G,together with coloring extension and coloring permutation,it was proved that every non-4-regular graph with maximum degree 4 was acyclically(3,3)^*-choosable.The obtained result generalized several relevant results of this topic.
作者
李春苗
陈敏
LI Chunmiao;CHEN Min(College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua 321004,China)
出处
《浙江师范大学学报(自然科学版)》
CAS
2020年第1期34-38,共5页
Journal of Zhejiang Normal University:Natural Sciences
基金
浙江省自然科学基金资助项目(Y19A010056)
关键词
非正常染色
无圈非正常染色
无圈非正常列表染色
最大度为4的图
正则图
improper coloring
acyclic improper coloring
acyclic improper list coloring
graphs with maximum degree 4
regular graph