摘要
提出了一种实时优化控制方案,将机器学习领域的监督学习算法应用于空调优化节能控制。与基于半物理模型的优化控制相比,该方案可以采用简单的机器学习模型,并可以在线学习更新,以适应实际应用中的系统老化和传感器误差等问题。基于某摩天大楼的冷却塔系统,进行了动态模拟测试,并与基于半物理模型的优化控制进行了比较,结果表明该方案有显著优势。
Proposes a real-time adaptive control scheme of applying supervised learning algorithms to the control of HVAC systems. Comparing with the semi-physical model optimal control, the proposed method can make use of simple machine learning models and be automatically updated online, so as to adapt to system degradation and/or sensor errors. Conducts the dynamic validation tests for the cooling tower system in a high-rise building. The results show that the proposed scheme has significant advantages over the semi-physical model based on optimal control method.
作者
单奎
王家远
Shon Kui;Wong Jiayuan(Shenzhen University,Shenzhen,Guangdong Province,China)
出处
《暖通空调》
2019年第12期86-90,53,共6页
Heating Ventilating & Air Conditioning
基金
国家自然科学基金资助项目(编号:71772125)
关键词
暖通空调
优化控制
机器学习
监督学习
自适应
建筑节能
HVAC
optimal control
machine learning
supervised learning
adaptivity
building energy efficiency