期刊文献+

基于量测噪声方差估计的GM-CBMeMBer算法 被引量:2

GM-CBMe MBer Algorithm Based on Measurement Noise Variance Estimation
下载PDF
导出
摘要 针对目标跟踪系统下量测噪声统计特性不准确甚至难以获取的问题,提出一种量测噪声统计特性自适应的高斯混合势均衡多目标多伯努利(Cardinality Balanced Multi-Target Multi-Bernoulli,GM-CBMeMBer)滤波算法。该算法引入Sage-Husa自适应滤波器的思想,利用遗忘因子对量测噪声协方差误差进行修正;建立检验统计量,判断算法敛散性;若滤波发散,则采用有偏估计方法来保证算法收敛性。仿真结果表明在非时变、时变量测噪声方差未知情况下,改进算法的跟踪性能优于传统的GM-CBMeMBer滤波算法,对量测噪声的变化具有较强的适应能力。 In order to solve the problem that the statistical characteristics of measurement noise in target tracking system are inaccurate or even difficult to obtain,Gaussian Mixture Cardinality Balanced Multi-Target Multi-Bernoulli(GM-CBMeMBer)filtering algorithm with Adaptive Noise Statistical Characteristics is proposed.The algorithm introduces the idea of Sage-Husa adaptive filter,uses the forgetting factor to correct the measurement noise covariance error,establishes the test statistic to judge the convergence of the algorithm,and if the filter is divergent,uses the biased estimation method to ensure the algorithm convergence.The simulation results show that the tracking performance of the improved algorithm is better than the traditional GM-CBMeMBer filtering algorithm in the case of unknown time-varying noise variance,which has strong adaptability to the changes of the measurement noise.
作者 董青 胡建旺 吉兵 DONG Qing;HU Jian-wang;JI Bing(Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003,China)
出处 《火力与指挥控制》 CSCD 北大核心 2019年第11期107-111,共5页 Fire Control & Command Control
关键词 势均衡多目标多伯努利 多目标跟踪 自适应滤波器 量测噪声 cardinality balanced multi-target multi-bernoulli multiple target tracking adaptive filter measurement noise
  • 相关文献

参考文献2

二级参考文献15

  • 1WU Jingjing, HU Shiqiang, WANG Yang. Adaptive multifeature visual tracking in a probability hypothe- sis density filtering framework [J]. Signal Processing, 2013, 93(11): 2915-2926.
  • 2VASIC M, MARTINOLI A. A collaborative sensor fusion algorithm for multi-object tracking using a Gaussian mixture probability hypothesis density filter [C]//Proceedings of the 18th International Conference on Intelligent Transportation Systems. Las Palmas: IEEE, 2015: 491-498.
  • 3PETETIN Y, MORELANDE M, Desbouvries F. Marginalized particle PHD filters for multiple object Bayesian filtering [J]. IEEE Transactions on Aero- space Electron System, 2014, 50(2) : 1182-1196.
  • 4VO B N, MAW K. The Gaussian mixture probabili- ty hypothesis density filter [J]. IEEE Transactions on Signal Process, 2006, 54(11): 4091-4104.
  • 5SMITH G L. Sequential estimation of observation er- ror variance in a trajectory estimation problem [J]. AIAA Journal, 1964, 5(11): 1964-1970.
  • 6SAGE A P, HUSA G W. Adaptive filtering with un- known prior statistics [C]// Proceedings of Joint Au- tomatic Control Conference. Boulder Colorado: IEEE, 1969 : 760-769.
  • 7NARASIMHAPPA M, RANGABABU P, SABAT S L, et al. A modified Sage-Husa adaptive Kalman fil- ter for denoising Fiber Optic Gyroscope signal [C]//// Proceedings of IEEE INDICON. Kochi: IEEE, 2012 : 1266-1271.
  • 8GAO Wei, LI Jingchun, ZHOU Guangtao, etal. A- daptive Kalman filtering with recursive noise estima- tor for integrated SINS/DVL systems [J]. Journal of Navigation, 2015, 68(1) : 142-161.
  • 9ZHANG Guanghua, LIAN Feng, HAN Chongzhao, et al. An improved PHD filter based on variational Bayesian method for multi-target tracking [C]// Pro- ceedings of the 17th International Conference on Infor- mation Fusion. Salamanca: IEEE, 2014: 1-6.
  • 10WU Xinhui, HUANG Gaoming, GAO Jun. Adap: tive noise variance identification for probability hy- pothesis density-based multi-target filter by variation- al Bayesian approximations [J]. lET Radar Sonar Navigation, 2013, 7(8): 895-903.

共引文献8

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部