期刊文献+

基于改进谱聚类的终端区航空器飞行轨迹分析 被引量:6

Aircraft Flight Trajectory Analysis in Terminal Area Based on Improved Spectral Clustering
下载PDF
导出
摘要 为精确分析终端区空中交通流空间分布特征,有效评估空中交通管制服务水平,研究了基于自然邻的自适应谱聚类终端区飞行轨迹分布识别方法.在分析终端区飞行轨迹数据基础上,采用重采样方法保留飞行特征对航迹归一化处理,基于航向变化因子和速度变化因子建立相似度计算模型;通过自然邻算法获取航迹点间邻近信息,无需输入规模参数自适应实现高斯核函数降噪处理,采用改进谱聚类算法对终端区交通流聚类分析.以昆明长水机场进行实例验证.结果表明,方法能够有效识别终端区交通流分布. In order to accurately analyze the spatial distribution characteristics of air traffic flow in terminal areas and effectively evaluate the service level of air traffic control,an adaptive spectral clustering method based on natural neighbors was studied to identify the distribution of flight trajectories in terminal areas.On the basis of analyzing the flight trajectory data in the terminal area,the resampling method was adopted to preserve the flight characteristics and normalize the flight trajectory,and a similarity calculation model was established based on the course change factor and the speed change factor.Neighbor information between track points was obtained through natural neighbor algorithm,and Gaussian kernel function noise reduction processing was realized adaptively without input of scale parameters.The improved spectral clustering algorithm was adopted for clustering analysis of traffic flow in terminal area.Taking Kunming Changshui Airport as an example,the results show that the method can effectively identify the traffic flow distribution in the terminal area.
作者 李树仁 卢朝阳 任广建 LI Shuren;LU Chaoyang;REN Guangjian(College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《武汉理工大学学报(交通科学与工程版)》 2019年第6期1130-1134,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然基金项目(61501225) 中央高校基本科研业务费专项资金项目(NZ2016109)资助
关键词 空中交通管制 终端区 飞行轨迹分析 谱聚类 air traffic control terminal area flight trajectory analysis spectral clustering
  • 相关文献

参考文献3

二级参考文献26

  • 1陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 2PERNG C S, WANG H, ZHANG S R, et al. Landmarks: a new model for similarity-based pattern querying in time series databases[ C]//Proceedings of the 16th International Conference on Data Engineering, [S.l. ] : IEEE, 2000: 33-42.
  • 3CHEN L, ZSU M T, ORIA V. Robust and fast similarity search for moving object trajectories[C]// Proceedings of the 2005 ACM S1GMOD International Conference on Management of Data. New York: ACM, 2005 : 491-502.
  • 4REHM F. Clustering of flight tracks[ C]//6th AIAA Infotech @ Aerospace 2010. Atlanta: AIAA, 2010: AIAA-2010-3412.
  • 5GARIEE M, SRIVASTAVA A, FERON E. Trajectory clustering and an application to airspace monitoring[ J]. Intelligent Transportation Systems, 2011, 12 (4) : 1511-1524.
  • 6KLEIN J, BITrlHN P, LEDOCHOWITSCH P, et al. Grid-based spectral fiber clustering[C]// Medical Imaging. International Society for Optics and Photonics. San Diego : SPIE, 2007 : 65091E-1- 65091E-10.
  • 7NG A Y, JORDAN M I, WEISS Y. On spectral clustering : analysis and an algorithm [ C ] // Proceedings of Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2001: 849 -856.
  • 8Von LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17 (4) : 395-416.
  • 9BELKIN M, NIYOG1 P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 10LEDL T. Kernel density estimation: theory and application in discriminant analysis[J]. Austrian Journal of Statistics, 2004, 33 (3) : 267-279.

共引文献44

同被引文献35

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部