摘要
为了研制性能更加优越的全海深浮力材料,文章针对由玻璃微珠和环氧树脂基体组成的复合泡沫材料建立体心立方单胞的微观力学模型,通过ANSYS有限元软件,对不同玻璃微珠体积分数和不同玻璃微珠壁厚组合的浮力材料进行了力学分析,结果表明:(1)最大应力主要集中在玻璃微珠内表面,并有明显的应力梯度;(2)当玻璃微珠体积分数相同时,随着r/R的减小,最大应力从玻璃微珠赤道位置的边界点逐渐向赤道位置扩展,随着r/R的进一步减小,应力开始向基体转移;(3)有效弹性模量曲线相交于r/R=0.962,玻璃微珠体积分数越大,随着r/R的增大,有效弹性模量减小越快;(4)t/R>0.04时,随着玻璃微珠体积分数的增大,相对弹性模量呈增大的趋势;(5)获得了玻璃微珠厚度、体积分数与有效弹性模量及浮力材料比重之间的关系图,为高性能全海深浮力材料的研制提供了理论依据。
In order to develop a high-performance full-ocean-depth buoyancy material, the meso-mechanical model of the body-centered cubic unit cell composed of glass microballoons and epoxy resin matrix is established, and the finite element program of ANSYS is used to evaluate the models which consist of different microballoon volume fraction and different wall thickness. The results show that:(1) the maximum stress is mainly concentrated on the inner surface of the glass microballoons and has a significant stress gradient;(2) when the volume fractions of microballoons are the same, as the r/R decreases, the maximum stress gradually expands from the boundary point of the equatorial position of the microballoons to the band of equatorial position. As the r/R further decreases, the stress begins to shift to the matrix;(3) the effective elastic modulus curves intersect at r/R=0.962, the larger the volume fraction of glass microballoons is, the faster the effective elastic modulus decreases with the increasing of r/R;(4) when t/R>0.04, the relative elastic modulus increases with the increase of the microballoons volume fraction;(5) the relationship among the thickness, the volume fraction of glass microballoons, the effective elastic modulus and specific gravity of buoyancy materials is obtained, which provides a theoretical basis for the development of high-performance full-ocean-depth buoyancy materials.
作者
陈鹿
王芳
崔维成
谢晶
CHEN Lu;WANG Fang;CUI Wei-cheng;XIE Jing(Shanghai Engineering Research Center of Hadal Science and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;School of Engineering,Westlake University,Hangzhou 310024,China;College of Food Science and Technology,Shanghai Ocean University,Shanghai 201306,China)
出处
《船舶力学》
EI
CSCD
北大核心
2019年第12期1486-1499,共14页
Journal of Ship Mechanics
基金
Supported by the General Program of National Natural Science Foundation of China(Grant No.51879157,No.51679133)
State Key Program of National Natural Science Foundation of China(Grant No.51439004)~~
关键词
全海深
浮力材料
有效弹性模量
有限元分析
full ocean depth
buoyancy material
effective elastic modulus
finite element analysis