期刊文献+

运动目标检测系统算法Simulink仿真 被引量:3

Simulink Simulation of Moving Object Detection System Algorithm
下载PDF
导出
摘要 随着计算机技术的不断发展和进步,计算机视觉理论及算法的研究也飞速前进,视觉系统虽然既能感知静止物体又能感知运动物体,但在多数情况下,人们一般只关注运动的目标。如今,不论是在军用还是民用领域,运动目标检测技术已经被越来越多的科学工作者高度关注。基于此,对运动目标检测系统进行了Simulink算法仿真,设计了运动目标检测仿真系统的总体框架,分析研究了系统的处理流程,将获取的视频源转化为灰度模式,对其进行光流法处理,进行流速阈值判别,并采用中值滤波与区域滤波器进行滤波,进行Blob分析,对图像数据进行恢复并显示出来。给出了运动目标检测的整体仿真结果。仿真结果表明,系统能够正确检测到运动目标,而且仿真效果较好,验证了系统设计的正确性。 With the continuous development and progress of computer technology,the research on computer vision theory and algorithm is also advancing rapidly.Although the vision system can perceive both stationary objects and moving objects,in most cases,people only focus on moving objects.Nowadays,whether in military or civilian fields,moving target detection technology has been paid more and more attention by scientific workers.Based on this,the Simulink algorithm simulation of moving target detection system is carried out,and the overall framework of the simulation system is designed,the processing flow of the system is analyzed.After the obtained video source is converted into grayscale mode,it is processed by optical flow method,and the velocity threshold would be judged.Then filtering of the video image by median filter and area filter is completed.Ultimately,the image data is recovered and displayed after Blob analysis,and the entire simulation results of the moving targets are obtained.The simulation results show that the system can correctly detect the moving target,and the simulation effect is good,which verifies the correctness of the system design.
作者 胡瑞卿 田杰荣 HU Ruiqing;TIAN Jierong(College of Aviation Foundation,Naval Aviation University,Yantai 264001;College of Air Combat Service,Naval Aviation University,Yantai 264001)
出处 《计算机与数字工程》 2019年第12期2999-3003,共5页 Computer & Digital Engineering
基金 军内科研项目(编号:HJ20172B07023)资助
关键词 滤波 SIMULINK 灰度 仿真 目标检测 filtering Simulink grey scale simulation object detection
  • 相关文献

参考文献2

二级参考文献12

  • 1Lipton A,Fujiyoshi H,Patil R.Moving target classi fication and tracking from real-time video.Proc IEEE Workshop on Applications of Computer Vision,Prin ceton,NJ,1998.8-14.
  • 2Meyer D,Denzler J,Niemann H.Model based extraction of articulated objects in image sequences for gait analysis.Proc.IEEE International Conference on Image Processing,Santa Barbara,California,1997.78-81.
  • 3Haritaoglu I,Harwood D,Davis L.W4.Real-time surveyllance of people and their activities.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809-830.
  • 4Karmann K,Brandt A.Moving Object Recognition Using An Adaptive Background Memory.Cappellini V,ed.Time-Varying Image Processing and Moving Object Recognition.Amsterdam:Elsevier Science,1990.289-296.
  • 5Kilger M.A shadow handier in a video-based real-time traffic monitoring system.Proc IEEE Workshop on Applications of Computer Vision,Palm Springs,CA,1992.1060-1066.
  • 6Stauffer C,Grimson W.Adaptive background mixture models for real-time tracking.Proc.of International Conference on Computer Vision and Pattern Recognition,1999,2:246-252.
  • 7Heikkila M.Pietikainen M,Heikkila J.A texture-based method for modeling thebackground detecting moving objects.IEEE Trans Pattern Analysis and Machine Intelligence,2006.657-662.
  • 8[美]Kenneth R.Castlemal 编.《数字图像处理》.电子工业出版社.
  • 9戴锋编.《VC + +程序设计基础》.清华大学出版社.
  • 10何斌等编著.《VC + +数字图像处理》.人民邮电出版社.

共引文献1

同被引文献57

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部