摘要
在传统某石化企业信息化三层平台——过程控制层、生产执行层、经营管理层的基础上,建设了大数据分析平台,开发了仪表预知维修系统,通过监测、采集、分析设备实时状态参数,进行故障诊断、劣化趋势的预测以及生成报警信息,得到设备目前可能存在的故障风险。仪表设备管理人员可以根据系统诊断出的故障类型,前往现场进行确认,进而降低仪表设备故障率,提高设备运行可靠度。
Based on the three-tier platform of process control layer,production execution layer and operation management layer in the traditional petrochemical enterprises,a big data analysis platform is built,and the instrument predictive maintenance system is developed.By monitoring,collecting and analyzing the real-time status parameters of the equipment,the fault is diagnosed.The deterioration trend is predicted,the alarming information is generated.The potential fault risk for the device is obtained.The personal responsible for the device can go to the site to confirm the fault of the device at present according to the type of fault diagnosed by the system.The fault rate of the instrument can be minimized.The operational reliability of the device is improved.
作者
耿庆安
Geng Qingan(Production and Operation Support Center of Sinopec Beijing Yanshan Branch,Beijing,102500,China)
出处
《石油化工自动化》
CAS
2019年第6期59-62,共4页
Automation in Petro-chemical Industry
关键词
智能工厂
大数据
软件
开发应用
smart factory
big data
software
development and application