期刊文献+

A Fatigue Damage Model for FRP Composite Laminate Systems Based on Stiffness Reduction 被引量:2

下载PDF
导出
摘要 This paper introduces a stiffness reduction based model developed by the authors to characterize accumulative fatigue damage in unidirectional plies and(0/θ/0)composite laminates in fiber reinforced polymer(FRP)composite laminates.The proposed damage detection model is developed based on a damage evolution mechanism,including crack initiation and crack damage progress in matrix,matrix-fiber interface and fibers.Research result demonstrates that the corresponding stiffness of unidirectional composite laminates is reduced as the number of loading cycles progresses.First,three common models in literatures are presented and compared.Tensile viscosity,Young’s modulus and ultimate tensile stress of composites are incorporated as key factors in this model and are modified in accordance with temperature.Four types of FRP composite property parameters,including Carbon Fiber Reinforced Polymer(CFRP),Aramid Fiber Reinforced Polymer(AFRP),Glass Fiber Reinforced Polymer(GFRP),and Basalt Fiber Reinforced Polymer(BFRP),are considered in this research,and a comparative parameter study of FRP unidirectional composite laminates with different off-angle plies using control variate method are discussed.It is concluded that the relationship between the drop in stiffness and the number of cycles also shows three different regions,following the mechanism of damage of FRP composites and the matrix is the dominant factor determined by temperature,while fiber strength is the dominant factor that determine the reliability of composite.
出处 《Structural Durability & Health Monitoring》 EI 2019年第1期85-103,共19页 结构耐久性与健康监测(英文)
  • 相关文献

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部