期刊文献+

Controlled Cyclic Remote State Preparation of Arbitrary Qubit States 被引量:5

下载PDF
导出
摘要 Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,we propose a new method for generating entanglement which is highly useful for multiparty quantum communications such as teleportation and Remote State Preparation(RSP).As one of its applications,we propose a new type of quantum secure communications,i.e.cyclic RSP protocols.Starting from a four-party controlled cyclic RSP protocol of one-qubit states,we show that this cyclic protocol can be generalized to a multiparty controlled cyclic RSP protocol for preparation of arbitrary qubit states.We point out that previous bidirectional and asymmetric protocols can be regarded as a simpler form of our cyclic RSP protocols.
出处 《Computers, Materials & Continua》 SCIE EI 2018年第5期321-329,共9页 计算机、材料和连续体(英文)
  • 相关文献

参考文献1

二级参考文献27

  • 1Z. J. Fu, X. M. Sun, Q. Liu, L. Zhou, and J. G. Shu, "Achieving Efficient Cloud Search Services: MultJ-keyword Ranked Search over Encrypted Cloud Data Supporting Parallel Computing," IEICE Transactions on Communications, vol. E98-B, no. 1, pp.190-200, 2015.
  • 2S. D. Xie, Y. X. Wang, "Construction of Tree Net- work with Limited Delivery Latency in Homoge- neous Wireless Sensor Networks," Wireless Per- sonal Communications, 2014, 78(1): 231-246.
  • 3R Guo, J. Wang, B. Li, S. Y. Lee, "A Variable Threshold-value Authentication Architecture for Wireless Mesh Networks," Journal of Internet Technology, 2014, 15(6): 929-936.
  • 4T. H. Ma, J. J. Zhou, M. L. Tang, Y. Tian, A. AL- DHELAAN, M. AL-RODHAAN, and S. Y. LEE, "So- cial network and tag sources based augment- ing collaborative recommender system," IEICE transactions on Information and Systems, vol. E98-D, no.4, pp. 902-910, Apr. 2015.
  • 5B. Gu, V. S. Sheng, K. Y. Tay, W. Romano, and S. Li, "Incremental Support Vector Learning for Ordinal Regression," IEEE Transactions on Neu- ral Networks and Learning Systems, 2014, 26(7): 1403-1416.
  • 6Dublin City University and Ericsson, E-Stream Project, 2014. http://www.estream-project.com.
  • 7G. S. Manku and R. Motwani, "Approximate Fre- quency Counts over Data Streams" In: Proceed- ings of the 28th International Conference on Very Large Databases (VLDB Endowment 2002), pp. 346-57, 2002.
  • 8J. H. Chang and W. S. Lee, "Finding Recent Fre- quent Itemsets Adaptively over Online Data Streams," In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (SlGKDD 2003), pp. 487-492, 2003.
  • 9H. F. Li and H. Chen, "Mining Non-Derivable Frequent Item Sets over Data Stream," Data & Knowledge Engineering, vol. 68, no. 5, May 2009, pp. 481-498.
  • 10S. K. Tanbeer, C. F. Ahmed, B. S. Jeong and Y. K. Lee, "Efficient Single-Pass Frequent Pattern Mining Using a Prefix-tree/' Information Scienc- es, 2008, 179(5): 559-583.

共引文献7

同被引文献14

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部