期刊文献+

基于产品特征树和LSTM模型的产品评论情感分析 被引量:6

Sentiment Analysis of Product Reviews Based on Product Feature Tree and LSTM Model
下载PDF
导出
摘要 [目的/意义]从产品评论数据挖掘角度出发,研究多层次、细粒度评论倾向性分析问题,为企业提供更全面的产品改善意见.[方法/过程]提出一种基于产品特征树和LSTM模型的产品评论情感分析方法.该方法结合行业产品特点和依存句法分析结果,通过特征类别、层级和特征表述词构建产品特征树;在此基础上,根据用户评论分句及其所包含的产品特征词汇,运用深度学习LSTM模型进行评论分句情感识别和产品特征情感分布计算.[结果/结论]利用真实汽车产品评论数据集进行试验检验,结果表明该方法情感分类准确率高,可实现面向产品特征层级的多粒度情感分布测算.[局限]产品特征树构建需要人工参与,方法模型的普适性有待进一步检验. [Purpose/significance]From the perspective of product reviews data mining,the paper focuses on multi-level and fine-grained tendency analysis to provide enterprises with more comprehensive opinions for products improvement.[Method/process]A method of sentiment analysis of product reviews based on product feature tree and LSTM model is proposed.The method combines industry product characteristics and dependency syntactic parsing results to construct product feature tree through feature categories,hierarchies and feature expressions.On this basis,according to the review text clauses and the product feature terms,the paper utilizes the LSTM model of deep learning to recognize emotion tendencies of review clauses and calculates emotion distribution of product features.[Result/conclusion]The experimental results show that the method has high accuracy in sentiment classification of review text clauses and can realize multi-granularity emotion evaluation on levels of product features.[Limitations]The construction of product feature tree recpiires manual participation,and the universality of the method model needs to be further tested.
出处 《情报理论与实践》 CSSCI 北大核心 2019年第12期134-138,共5页 Information Studies:Theory & Application
基金 江苏省研究生实践创新计划项目“网络产品评论细粒度意见挖掘及应用研究”(项目编号:SJCX18_0140) 江苏省社会科学基金项目“领域知识分析视角下文献知识关联揭示及应用研究”(项目编号:17TQB009) 江苏省2011社会公共安全协同创新的研究成果之一
关键词 产品评论 产品特征树 LSTM模型 细粒度情感分析 product reviews product feature tree LSTM model fine-grained sentiment analysis
  • 相关文献

参考文献9

二级参考文献53

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2姚天昉,聂青阳,李建超,李林琳,陈柯,付宁.一个用于汉语汽车评论的意见挖掘系统[C]//中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集.北京:清华大学出版社,2006:260-281.
  • 3Hong Yu, Vasileios Hatzivassiloglou. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences [C]//Proceedings of EMNLP 2003,2003: 129-136.
  • 4Ellen Riloff, Janyce Wiebe, William Phillips. Exploiting subjectivity classification to improve information extraction [ C ]//Proceedings of AAAI-2005, 2005: 1106-1111.
  • 5Minqing Hu,Bing Liu. Mining opinion features in customer reviews[C]//Proceedings of AAAI-2004,2004: 755-760.
  • 6倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 7Soo-Min Kim,Eduard Hovy. Automatic detection of opinion bearing words and sentences[C]//Proceedings of IJCNLP-2005,2005 : 61-66.
  • 8Jun Zhao,Kang Liu,GenWang. Adding redundant features for crfs based sentence sentiment classification [C]//Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, 2008: 117-126.
  • 9Minqing Hu, Bing Liu. Mining and summarizing customer reviews [C]//Proceedings of KDD-2004, 2004 : 168-177.
  • 10LIU Bing,HU Mingqing,CHENG Junsheng.Opinion observer:analyzing and comparing opinions on the web[Z].Interna-tional World Wide Web Conference Committee(IW3C2),Chiba,2005.

共引文献338

同被引文献76

引证文献6

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部