期刊文献+

基于GRNN神经网络模型的交通运输能力预测研究 被引量:3

The Research on Traffic Capacity Prediction Based on GRNN Neural Network Model
下载PDF
导出
摘要 为得到交通运输能力的合理预测结果,文章在2010~2018年历史统计数据的基础上,通过建立GRNN广义回归神经网络模型,对交通运输能力进行合理预测,并将模型的预测结果与实际结果进行对比,分析误差率。结果表明:基于GRNN广义回归神经网络模型能作为一种新方法预测和研究运输能力,模型中光滑因子的设定大小与模型的逼近性能误差成正相关,与模型的预测性能误差成负相关。 In order to get a reasonable forecast result of transportation capacity,the paper establishes GRNN generalized regression neural network model which based on the historical statistical data of 2010-2018 to make a reasonable forecast of transportation capacity.The prediction results of the model are compared with the actual results,and the error rate is analyzed.The results show that the generalized regression neural network model based on GRNN can provide a new method for the prediction and analysis of transport capacity,and the set magnitude of the smoothness factor in the model is positively correlated with the approximation performance error of the model,and negatively correlated with the prediction performance error of the model.
作者 王菁 刘畅 WANG Jing;Liu Chang(School of Mechanical Engineering,Changchun Normal Universit y,Changchun,Jilin 130032;School of Traffic and Transportation Engineering,Dalian Jiaotong University,Dalian,Liaoning 116028)
出处 《南方农机》 2019年第24期203-205,共3页
关键词 神经网络 交通运输能力 货运量预测 光滑因子 neural network transportation capacity freight volume prediction smoothing factor
  • 相关文献

参考文献3

二级参考文献8

共引文献18

同被引文献30

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部