期刊文献+

基于集中式MIMO雷达的多目标跟踪功率分配优化算法 被引量:4

Multiple Targets Tracking Power Allocation Optimization Algorithm Based on Collocated MIMO Radar
下载PDF
导出
摘要 针对集中式MIMO雷达对多个运动目标进行跟踪的问题,提出一种基于后验克拉美罗下界的功率分配方法。首先给出了多个运动目标定位误差的后验克拉美罗下界,并将其作为代价函数进行优化,从而将雷达功率分配转化为求解凸优化问题;然后,运用SDP算法对该凸优化问题进行处理,将其转化为SDP问题并求解,从而实现对雷达功率的优化分配;最后,通过仿真验证了算法的有效性。结果表明,与功率平均分配和一种基于最大信噪比的贪婪算法相比,该功率优化分配方法能明显提高目标跟踪精度。 In view of collocated MIMO radar tracking multiple moving targets,this paper proposes a power allocation method based on the Posterior Cramer-Rao Lower Bound(PCRLB).In this method,firstly,the PCRLB of multiple moving targets localization localization errors is given as a cost function for power allocation.Thus,the radar power allocation is transformed into a convex optimization problem.Then,the SDP algorithm is used to deal with the convex optimization problem to transform it into a SDP problem and solve,realizing the optimal allocation of radar power.Finally,the validity of the proposed algorithm is verified by simulation.The results show that compared with the average power distribution and a greedy algorithm based on maximum SNR,the tracking accuracy of the target is obviously improved by the optimal power distribution method.
作者 李正杰 谢军伟 张浩为 蔡保杰 葛佳昂 LI Zhengjie;XIE Junwei;ZHANG Haowei;CAI Baojie;GE Jia’ang(Air and Missile Defense Colloge,Air Force Engineering University,Xi’an 710051,China)
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2019年第5期76-82,共7页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金(61503408)
关键词 集中式MIMO雷达 后验克拉美罗下界 SDP算法 功率分配 collocated MIMO radar PCRLB SDP algorithm power allocation
  • 相关文献

参考文献5

二级参考文献41

  • 1周万幸,吴呜亚,胡明春.双(多)基地雷达系统[M].北京:电子工业出版社,2011:1-30.
  • 2Van Trees H L, Bell K L, and Wang Y. Bayesian Cramer-Rao bounds for multistatic radar[C]. Proceedings of the Waveform Diversity Design, Washington, 2006: 856-859.
  • 3Godrich H, Petropulu A, and Poor H V. Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 247-260.
  • 4Godrich H, Petropulu A, and Poor H V. Power allocation strategies for target localization in distributed multiple-radar architecture[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226-3240.
  • 5Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
  • 6Hero A O and Cochran D. Sensor management: past, present, and future[J]. IEEE Sensors Journal, 2011, 11(12): 3064- 3075.
  • 7Boyd S and Vandenberghe L. Convex Optimization[M]. Cambridge: UK, Cambridge University, 2004: 67-127.
  • 8Rao S S. Ei~gineering Optimization: Theory and Practice[M], 3rd Ed, New York: Wiley, 1996: 383-425.
  • 9Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[M]. Norwood, MA: Artech House, 2004: 1-82.
  • 10Bar-Shalom Y, Li X R, and Kirubarajan T. Estimation with Applications to Tracking and Navigation[M]. New York, NY: John Wiley &: Sons, 2001: 199-295.

共引文献24

同被引文献24

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部