期刊文献+

Severe drought strongly reduces water use and its recovery ability of mature Mongolian Scots pine(Pinus sylvestris var. mongolica Litv.) in a semi-arid sandy environment of northern China 被引量:4

Severe drought strongly reduces water use and its recovery ability of mature Mongolian Scots pine(Pinus sylvestris var. mongolica Litv.) in a semi-arid sandy environment of northern China
下载PDF
导出
摘要 Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level.However, adaptability and plasticity of individuals to the changing drought conditions greatly vary among tree species.In this study, we estimated water use(Ts) of Mongolian Scots pine(MSP;Pinus sylvestris var.mongolica Litv.) based on sap flux density measurements over four successive years(2013–2016) that exhibited significant fluctuations in precipitation in a semi-arid sandy environment of northern China.The results showed that fluctuations in daily Ts synchronously varied with dry-wet cycles of soil moisture over the study period.The daily ratio of water use to reference evapotranspiration(Ts/ET0) on sunny days in each year showed a negative linear relationship with the severity of drought in the upper soil layer(0–1 m;P<0.01).The decrease in Ts induced by erratic drought during the growing season recovered due to precipitation.However, this recovery ability failed under prolonged and severe droughts.The Ts/ET0 ratio significantly declined with the progressive reduction in the groundwater level(gw) over the study period(P<0.01).We concluded that the upper soil layer contributed the most to the Ts of MSP during the growing season.The severity and duration of droughts in this layer greatly reduced Ts.Nevertheless, gw determined whether the Ts could completely recover after the alleviation of long-term soil drought.These results provide practical information for optimizing MSP management to stop ongoing degradation in the semi-arid sandy environments. Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level.However, adaptability and plasticity of individuals to the changing drought conditions greatly vary among tree species.In this study, we estimated water use(Ts) of Mongolian Scots pine(MSP; Pinus sylvestris var.mongolica Litv.) based on sap flux density measurements over four successive years(2013–2016) that exhibited significant fluctuations in precipitation in a semi-arid sandy environment of northern China.The results showed that fluctuations in daily Ts synchronously varied with dry-wet cycles of soil moisture over the study period.The daily ratio of water use to reference evapotranspiration(Ts/ET0) on sunny days in each year showed a negative linear relationship with the severity of drought in the upper soil layer(0–1 m; P<0.01).The decrease in Ts induced by erratic drought during the growing season recovered due to precipitation.However, this recovery ability failed under prolonged and severe droughts.The Ts/ET0 ratio significantly declined with the progressive reduction in the groundwater level(gw) over the study period(P<0.01).We concluded that the upper soil layer contributed the most to the Ts of MSP during the growing season.The severity and duration of droughts in this layer greatly reduced Ts.Nevertheless, gw determined whether the Ts could completely recover after the alleviation of long-term soil drought.These results provide practical information for optimizing MSP management to stop ongoing degradation in the semi-arid sandy environments.
出处 《Journal of Arid Land》 SCIE CSCD 2019年第6期880-891,共12页 干旱区科学(英文版)
基金 supported by the Fundamental Research Funds for the Central Nonprofit Research Institution of Chinese Academy of Forestry (CAFYBB2014MA013) the National Natural Science Foundation of China (31570704) the Major State Basic Research Development Program of China (2013CB429901)
关键词 groundwater soil water availability water stress sap flow reference evapotranspiration groundwater soil water availability water stress sap flow reference evapotranspiration
  • 相关文献

参考文献5

二级参考文献37

共引文献239

同被引文献92

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部