期刊文献+

一种常闭翅片式冷冻阀的结构设计与有限元分析 被引量:2

Structural Design and Finite Element Analysis of a Normally-Closed Finned Freeze Valve
原文传递
导出
摘要 在钍基熔盐堆(TMSR)二回路中冷冻阀TMSR-FV1的功能是充当常闭截止阀。TMSR-FV2为TMSR-FV1的改进版,其在保持TMSR-FV1整体不变的情况下,在外表面增加翅片以增强传热。本文采用有限元方法对TMSR-FV2进行了结构设计和传热分析,研究自然冷却条件下翅高、翅厚和翅距等因素对TMSR-FV2内熔盐冻堵效果的影响,提出了一种翅片结构,并与TMSR-FV1在自然冷却及不同冷却流量条件下的实验冻堵效果进行了对比。计算结果表明:在研究范围内,本文提出的TMSR-FV2翅片结构有效降低了冷冻阀扁平段中心熔盐温度,对提升冷冻阀冻堵效果明显,实现了冷冻阀非能动关闭功能。 The freeze valve TMSR-FV1 functions as a normally closed shut-off valve in the secondary loop of the Thorium-based Molten Salt Reactor(TMSR). TMSR-FV2 is an improved version of TMSR-FV1, which heat transfer is enhanced by adding fins to the outer surface of freeze valve while keeping its size intact. In this paper, the Finite Element Method was used to make structural design and thermal analysis of TMSR-FV2. The effects of fin height, fin thickness and fin pitch on the cooling of molten salt in TMSR-FV2 under natural cooling conditions were studied. A finned freeze valve structure was proposed and compared with the experimental salt plug effect of TMSR-FV1 under natural cooling and different cooling flow conditions. The calculation results show that the proposed TMSR-FV2 effectively reduces the central molten salt temperature of the flat section to enhanc the salt plug of the freeze valve and realizes the passive closing function of the freeze valve within the scope of the research.
作者 蒋鑫越 王纳秀 苏博 陈玉爽 孔祥波 陆惠菊 傅远 Jiang Xinyue;Wang Naxiu;Su Bo;Chen Yushuang;Kong Xiangbo;Lu Huiju;Fu Yuan(Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Jiading Campus,Shanghai,201800,China;University of Chinese Academy of Sciences,Beijing,100049,China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2019年第6期149-154,共6页 Nuclear Power Engineering
基金 中国科学院战略性先导科技专项(XDA0201002) 国家自然科学基金(91326201)
关键词 翅片 冷冻阀 有限元 熔盐堆 Fin Freeze valve Finite element Molten salt reactor
  • 相关文献

参考文献2

二级参考文献14

  • 1朱正罡.短路加热[J].医药工程设计,1992(6):20-25. 被引量:2
  • 2郭太安.数理统计与管理[J].数理统计与管理,1989(6):36.
  • 3JAMES A L. The fourth generation of nuclear power[J]. Progress in Nuclear Energy, 2002, 40(3-4): 301-307.
  • 4Forsberg Charles W. Molten-Salt-Reactor Technology Gaps[C]. Proceedings of ICAPP 06, 2006:6295.
  • 5Bettis E S. The aircraft reactor experiment design and construction[J]. Nuclear science and engineering: II, 1957: 804-825.
  • 6ORNL-TM-0128[R], ORNL, 1962.
  • 7张丝雨.最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册[M].中国科技文化出版社,2005:146.
  • 8Benes O, Konings R J M. Thermodynamic properties and phase diagrams of fluoride salts for nuclear applications[J]. Journal of Fluorine Chemistry, 2009, 130 (1): 22-29.
  • 9Khokhlov V, Korzun I, Dokutovich V, et al. Heat capacity and themal conductivity of molton ternary lithium sodium and zirconium fluorides mixtures[J]. Journal of Nuclear Materials, 2011,410(03): 32-38.
  • 10Bergman Theodore L, Lavine Adrienne S, Incropera Frank P, et al. Fundamental of heat and mass transfer[M]. Seventh Edition. John Wiley & SONS, Inc, New York, 2011:621-627.

共引文献84

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部