期刊文献+

基于数值模拟的搅拌摩擦焊晶粒分析 被引量:2

Grain Analysis of Friction Stir Welding Based on Numerical Simulation
下载PDF
导出
摘要 在Al-Zn-Mg合金的搅拌摩擦焊接(FSW)期间,焊接材料的晶粒尺寸显著影响其机械性能。为了预测不同焊接工艺参数对焊接材料晶粒尺寸的影响规律,本文使用DEFORM-3D软件模拟了搅拌摩擦焊接过程,分析不同的旋转速度和不同的焊接速度对搅拌区(SZ)温度场和应变率场的影响。结果表明,SZ的温度随焊接速度增加而降低,但焊接速度对应变率没有影响;SZ的温度和应变率随着搅拌针旋转速度的增加而增加。借助Zener-Hollomon参数的经验公式预测的晶粒尺寸和实验得出的SZ晶粒尺寸变化趋势一致,发现SZ的晶粒尺寸随着旋转速度增加而增加,随焊接速度增加而变小。 During friction stir welding(FSW)of Al-Zn-Mg alloy,the grain size of the welded material significantly affects its mechanical properties.In order to predict the influence of different welding process parameters on the grain size of the welded material,the DEFORM-3D software was used to simulate the FSW process,and the effects of different rotation speed and different welding speed on the temperature field and strain rate field of the stirring zone(SZ)were analyzed.The results show that the temperature of SZ decreases with the increase of welding speed,but the welding speed has no effect on the strain rate.The strain rate and temperature of SZ increase as the rotating speed increases.The grain size predicted by the empirical formula of the Zener-Hollomon parameter is consistent with the variation trend of SZ grain size obtained by experiments.It is found that the grain size of SZ increases with the increase of the rotation speed,and it becomes smaller when the welding speed increases.
作者 余炯 杨昭 邓运来 吴业峰 付嘉妮 YU Jiong;YANG Zhao;DENG Yunlai;WU Yefeng;FU Jiani(School of Materials Science and Engineering,Central South University,Changsha 410083,China)
出处 《热加工工艺》 北大核心 2019年第23期130-133,共4页 Hot Working Technology
基金 国家重点研发计划项目(2016YFB0300900)
关键词 AL-ZN-MG合金 DEFORM-3D 数值模拟 搅拌摩擦焊接 晶粒尺寸 Al-Zn-Mg alloy DEFORM-3D numerical simulation friction stir welding grain size
  • 相关文献

参考文献3

二级参考文献20

  • 1王大勇,冯吉才,王攀峰.搅拌摩擦焊接热输入数值模型[J].焊接学报,2005,26(3):25-28. 被引量:45
  • 2何燕,张立文,牛静,裴继斌.元胞自动机方法对动态再结晶过程的模拟[J].材料热处理学报,2005,26(4):120-124. 被引量:30
  • 3赵张龙,郭鸿镇,姚泽坤,张维.应变速率对TC21钛合金超塑性拉伸微观组织的影响[J].热加工工艺,2007,36(8):28-30. 被引量:8
  • 4张建强,张国栋,赵海燕,岳红杰,张海泉,鹿安理.铝合金薄板焊接应力三维有限元模拟[J].焊接学报,2007,28(6):5-9. 被引量:29
  • 5Thomas W M, Nicholas E D, Needham J C, et al. Friction Stir Welding [P]. GB, 9 125978.8,1991.
  • 6Chen C M, Kovacevic R. Finite element modeling of friction stir welding-thermal and thermomechanical analysis [J]. International Journal of Machine Tools & Manufacture, 2003, (43) : 1319-1326.
  • 7Song M, Kovacevic R. Thermal modeling of friction stir welding in a moving coordinate system and its validation [J]. International Journal of Machine Tools & Manufacture,2003, (43) :605-615.
  • 8Buffa G, Fratini L, Pasta S, Shivpuri R. On the thermo-mechanical load and the resultant residual stresses in friction stir processing operations [J]. CIRP Annals-Manufacturing Technology, 2008, (57) :287-29.
  • 9Heinz A, Haszler A, Keidel C, Moldenhauer S. Recent development in aluminum alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, 280:102-107.
  • 10Ren S R, Ma Z Y. Effect of welding parameters on tensile properties and fracture behavior of friction stir welded AI-Mg-Si alloy[J]. Scripta Materialia. 2007,56:69-72.

共引文献16

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部