期刊文献+

低雷诺数下翼型气动特性和涡脱落模态分析 被引量:2

Aerodynamic characteristics and vortex shedding patterns analysis of airfoil at low Reynolds number conditions
原文传递
导出
摘要 基于多弛豫格子玻尔兹曼方法对低雷诺数下的二维翼型气动特性和尾流涡脱落特性进行了分析.为了提高计算准确性,采用分块网格细化算法对流场变化剧烈区域进行加密,采用格插值反弹格式处理曲线边界和动量交换方法计算升阻力.通过对及e=1 000时不同格点数目NACA0012绕流的数值模拟,验证了网格的无关性和算法的有效性.在低雷诺数下,流动呈现明显的非定常特性,引起前、后缘分离与再附以及涡脱落现象.研宄发现涡的脱落频率和模态随攻角的变化而变化,存在3种典型的涡脱落模态,即二单(2S)、二双(2P)和双+单(P+S)模态. The aerodynamic forces and wake vortex shedding characteristics on the low Reynolds number flow past two-dimensional airfoil were proposed by multiple-relaxation-time lattice Boltzmann method.The block mesh refinement was adopted for structured grids in which a finer mesh was needed in parts of the domain characterized by complex flow,and where higher accuracy was required.This new scientific method can effectively solve the complex flow field simulation problems with reasonable accuracy and reliability by simulating unsteady flows around NACA0012 airfoil at R e-\000.The flow exhibits distinct unsteady characteristics,causing separation and reattachment of the leading and trailing edges and vortex shedding at low Reynolds numbers.The results show that accompanying the variations in angle of attack are change in the vortex shedding frequency and the vortex wake pattern»and wake modes,2S(single),2P(pair)and P+S,are observed.
作者 王威 王军 尹国庆 彭勇 WANG Wei;WANG Jun;YIN Guoqing;PENG Yong(School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第12期1-6,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重点研发计划资助项目(2018YFB0606101)
关键词 格子玻尔兹曼方法 多弛豫 分块网格 翼型绕流 涡脱落模态 lattice Boltzmann method multiple-relaxation-time block mesh refinement flow past airfoil vortex shedding patterns
  • 相关文献

参考文献6

二级参考文献46

  • 1白鹏,崔尔杰,李锋,周伟江.对称翼型低雷诺数小攻角升力系数非线性现象研究[J].力学学报,2006,38(1):1-8. 被引量:31
  • 2白鹏,崔尔杰,周伟江,李锋.翼型低雷诺数层流分离泡数值研究[J].空气动力学学报,2006,24(4):416-424. 被引量:26
  • 3[1]Muti Lin J C, Pauley L L. Low-Reynolds-number separation on an airfoil[J]. AIAA J, 1996, 34(8):1570~1577
  • 4[2]Lissaman P B S. Low-Reynolds-number airfoils[J]. Ann Rev Fluid Mech, 1983, 15:223~239
  • 5[3]Dovgal A V, Kozlov V V, Michalke A. Laminar boundary layer separation: instability and associated phenomena[J]. Prog Aerospace Sci, 1994, 30:61~94
  • 6[4]Mueller T J, Batill S M. Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers[J]. AIAA J, 1982, 20(4):457~463
  • 7[5]Liebeck R H. Laminar separation bubbles and airfoil design at low Reynolds numbers[R]. AIAA 92-2735, 1992
  • 8[6]Pauley L L, Moin P, Reynolds W C. The structure of two-dimensional separation[J]. J Fluid Mech, 1990, 220:397~411
  • 9[7]Alam M, Sandham N D. Direct numerical simulation of ‘short' laminar separation bubbles with turbulent reattachment[J]. J Fluid Mech, 2000, 403:223~250
  • 10John A Ekaterinaris,Max F Platzer.Computational Prediction of Airfoil Dynamic Stall[J].Prog. Aerospace Sci.,1997,33:759-846.

共引文献207

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部