期刊文献+

基于RBF-BSA的锂离子电池SOC混合估算算法 被引量:7

State of charge estimation of lithium-ion battery based on hybrid algorithms of RBF-BSA
原文传递
导出
摘要 为提高锂离子电池荷电状态(SOC)预测精度,提出利用回溯搜索算法(BSA)优化径向基函数(RBF)神经网络的输出权值与阈值的混合算法.通过对锂电池模型中的目标函数进行优化求解,并寻找最佳的目标权值和阈值降低预测误差,提高了RBF网络模型的预测精度.为验证算法的有效性,搭建锂离子电池的充放电实验平台获取数据并对网络进行验证,实验结果表明:混合算法相比标准RBF网络算法具有更好的SOC预测精度,并将网络输出预测误差降低到2%以内,符合锂电池荷电状态估算要求. A hybrid algorithm was proposed to improve the prediction accuracy of state of charge(SOC)estimation of lithium battery by optimizing the output weight and threshold of the radial basis function(RBF)neural network using backtracking search algorithm(BSA).The prediction accuracy of the RBF network model was improved by optimizing the target function in the lithium-ion battery model and finding the optimal value of the target weight and threshold to reduce the prediction error.To assess the effectiveness of the algorithm,the experimental platform for charging and discharging lithium ion batteries was built to obtain data and verify the network.The experiment results show that the hybrid algorithm has better SOC prediction accuracy than the standard RBF network algorithm,and the prediction error of the network requirements of lithium-ion battery.
作者 李占英 时应虎 张海传 孙静雯 LI Zhanying;SHI Yinghu;ZHANG Haichuan;SUN Jingwen(School of Information Science and Engineering,Dalian Polytechnic University,Dalian 116034,Liaoning China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第12期67-72,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51337001)
关键词 锂离子电池 回溯搜索算法 径向基神经网络 荷电状态 目标函数 lithium-ion battery backtracking search algorithm function
  • 相关文献

参考文献2

二级参考文献17

  • 1林成涛,仇斌,陈全世.电流输入电动汽车电池等效电路模型的比较[J].机械工程学报,2005,41(12):76-81. 被引量:59
  • 2LIN C H, HSIEH C Y, CHEN K H. A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging [J].IEEE Trans Circuits Syst I, 2010, 57(2):506-517.
  • 3SHEIKHAN M, PARDIS R, GHARAVIAN D. State of charge neu- ral computational models for high energy density batteries in elec- tric vehicles [J]. Neural Computing and Applications, 2012, 22(6): 1171-1180.
  • 4LIU Z, WANG Y, DU J, et al. RBF network-aided adaptive un- scented Kalman filter for lithium-ion battery SOC estimation in electric vehicles [J]. IEEE Transactions on Industrial Electronics, 2011, 12(9):1673-1677.
  • 5KIM T, QIAO W, QU L. Real-time state of charge and electrical impedance estimation for lithium-ion batteries based on a hybrid battery model [J]. IEEE Transactions on Industrial Electronics, 2013, 13(8):563-568.
  • 6STAIANO A, TAGLIAFERRI R, PEDRYCZ W. Improving RBF networks perfornmnce in regression tasks by means of a supervised fuzzy clustering[J]. Neurocomutine, 2006.69(8/: 1570-1581.
  • 7CHANG W f Estimation of the stateof clarge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA [J]. International Journal of Electrical Power & Energy Systems, 2013, 53(12):603-611.
  • 8GAN M, PENG H, DONG X P. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction [J]. Applied Mathematical Modelling, 2012, 36(7):2911- 2919.
  • 9HASHEMI A B,MEYBODI M R. A note on the learning automata based algorithms for adaptive parameter selection in PSO [J].Ap- plied Soft Computing Journal, 2011, 11(1): 689-705.
  • 10FASIHFAR Z, HADDADNIA J. Designing a fuzzy RBF neural network with optimal number of neuron in hidden layer and effect of signature shape for persian signature Recognition by Zemike moments and PCA [C]//Proceedings of 2010 Intemational Confer- ence on Web Information Systems and Mining, WISM.Sanya,Chi- na:WISM,2010:188-192.

共引文献10

同被引文献56

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部