期刊文献+

Power Lindley-Logarithmic分布及其参数估计 被引量:1

Power Lindley-Logarithmic Distribution and Parameter Estimation
原文传递
导出
摘要 将Power Lindley分布和Logarithmic分布“混合”得到一个危险率形式多样的新型寿命分布Power Lindley-Logarith⁃mic(PPL)分布,研究了该分布的矩、分位数、危险率函数、顺序统计量的极限分布和参数的极大似然估计(maximum likelihood estimation,MLE),验证了极大似然估计的相合性和渐近正态性,应用EM(expectation-maximization)算法求参数的极大似然估计,并进行了Monte Carlo模拟.模拟实验表明,EM算法得到的参数的极大似然估计很好地反映了参数的真值,且PPL分布参数的极大似然估计具有良好的渐近正态性. This paper proposes a new lifetime distribution named Power Lindley-Logarithmic distribution(PLL)by compounding the Power Lindley distribution and the Logarithmic distribution.In the paper,its moment,quantile,hazard rate function,limiting distribution of the order statistics and the MLE(maximum likelihood estimation)of the parameters are discussed,the consistency and asymptotic normality of the MLE are verified,and EM(expectation-maximization)algorithm is used to get the MLE.In the end,the paper carries out Monte Carlo simulation which indicates that the MLE obtained by EM algorithm perfectly reflects the true value of the parameters,and the parameters’MLE of the PPL distribution have good asymptotic normality.
作者 王泽琪 刘禄勤 WANG Zeqi;LIU Luqin(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,Hubei,China)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2019年第6期581-592,共12页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助(11171263)
关键词 Power Lindley分布 Logarithmic分布 极大似然估计 EM算法 power Lindley distribution Logarithmic distribution maximum likelihood estimation(MLE) EM algorithm
  • 相关文献

参考文献1

二级参考文献18

  • 1峁诗松.高等数理统计[M].北京:高等教育出版社,1998..
  • 2Adamidis K, Loukas S. A lifetime distribution with decreasing failure rate[J]. Stat. Prob. Letters 1998, 39(1): 35-42.
  • 3Kus C. A new lifetime distribution[J]. Comput. Star. Data Anal., 2007, 51(9): 4497-4509.
  • 4Tahmasbi R, Rezaei S. A two-parameter lifetime distribution with decreasing failure rate[J]. Comput Stat. Data Anal., 2008, 52(8): 3889-3901.
  • 5Chahkandi M, Ganjali M. On some lifetime distributions with decreasing failure rate[J]. Comput. Stat. Data Anal., 2009, 53(12): 4433-4440.
  • 6Barreto-Souza W, Morais A L, Cordeiro G M. The Weibull-geometric distribution[J]. J. Stat. Com- put. Simul., 2011, 81(5): 645-657.
  • 7Soliman A A. Bayes prediction in a Pareto lifetime model with random sample size[J]. J. Royal Stat. Soc. Series D, 2000, 49(1): 51-62.
  • 8Johnson N L, Kemp A W, Kotz S. Univariate discrete distributions[M]. Hoboken: John Wiley and Sons. 2005.
  • 9Erdelyi A, Magnus W, Oberhettinger F, et al. Higher transcendental functions[M]. New York: McGraw-Hill, 1953.
  • 10Renyi A. On measures of entropy and information[A]. Fourth Berkeley Symposium on Mathematical Statistics and Probability[C]. Berkeley: University of California Press, 1961: 547-561.

共引文献2

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部